

Eric Aligo^{1,2}, <u>Brad Ferrier^{1,2}</u>, Greg Thompson³, Jacob Carley^{1,2}, Eric Rogers², Ying Lin², Binbin Zhou^{1,2}, and Geoff DiMego^{2,4}

¹I. M. Systems Group, Inc. (IMSG); ²NOAA/NWS/NCEP/EMC; ³NCAR/RAL; ⁴Retired

28th Conf. on Weather Analysis and Forecasting (WAF)/ 24th Conf. on Numerical Weather Prediction (NWP) AMS Annual Meeting, Seattle, WA 24 January 2017

Introduction

- The new F-A scheme is part of the version 4 North American Modeling (NAMv4) upgrade (February 2017 implementation)
- Results will be shown only from 3-km NMMB runs
- Only a subset of the microphysics changes will be described

Primary Microphysics Changes

- Increased the area of stratiform anvils & reduced high reflectivity biases at upper levels
 - \checkmark Larger # conc. of snow (N_s) at cold temperatures away from convection
- Improved vertical structure of stratiform radar reflectivity
 - \checkmark Assumed mean drop sizes ($\overline{D_r}$) fixed with height below melting layers
- Reduced widespread light reflectivity from shallow PBL clouds
 - ✓ Added a drizzle scheme for low clouds where warm-rain processes dominate

Stratiform Rain Parameterization (1 of 2)

- Z_n is the first (lowest) model level where T < 0°C
- Z_{n-1} is where ice melts to form rain at >0°C
- Drops evaporate in dry air below cloud base until reaching Z₁ (1st model level above the surface)
- Two different assumptions for drop size spectra:
 - 1. OLD: Fixed intercept (N_{0r}), variable mean diameter $(\overline{D_r})$ that *decreases* as rain falls towards the ground ... vs ...
 - 2. NEW: Fixed mean diameter $(\overline{D_r})$, variable intercept (N_{0r}) that *decreases* as rain falls towards the ground

Smallest change in # of small drops
Largest change in # of large drops

Fewer small drops, less rain evaporates
Similar change in # of drops of all sizes

6-h Valid at 21Z 29 June 2012 Derecho (1 of 2)

A - Larger N_s reduced snow reflectivity aloft in stratiform anvils B - Stratiform rain scheme increased rain reflectivity & rainfall below anvils

Drizzle Parameterization (1 of 2)

- Drizzle forms from low-level liquid clouds at >0°C
- It is completely disconnected from rain formed from melting ice
- Assumes smaller, more numerous drops
- Parameterized by *increasing* N_{0r} (opposite of stratiform rain)

Drizzle Parameterization (2 of 2)

 $(N_L = N_0 \text{ for exponential distributions})$

Improved Composite Reflectivity from Drizzle

12-h valid

Echoes from small raindrops formed in thin PBL clouds.

COMPOSITE REF CONUSX 12H FCST VLD 12Z 23 JUN 2016

NEW F-A

<u>Reduced</u> areas of < 20 dBZ due to new drizzle scheme

^{1/24/2017}

28th WAF/24th NWP Conf

28th WAF/24th NWP Conf

Reduced High QPF Biases (Warm Season)

- Improved data assimilation methods described in 3B.4 (Rogers et al.), Poster 1204 (Carley et al.), & Session 9.5 of IOAS Conf (Liu et al.)
- Other model changes also described in Poster 1205 (Ferrier et al.)

0-12h Rainfall from 19 July 2016

THREEHDLD (INCHES)

Summary

- The F-A microphysics changes played a part of the NAMv4 upgrade, resulting in
 - Improved composite and 1-km AGL radar reflectivity (and vertical radar reflectivity structure)
 - Improved (reduced) high QPF biases in the current 4km ops NAM CONUS nest
- These changes will be most noticeable during the warm season

Future Work

 Evaluate multiple microphysics packages (F-A, Thompson, WSM6) in regional 3-km FV3 runs as part of the regional NAMv4 CONUS nest physics suite