

NOAA Near-Real Time Arctic GOES/POES

Composite Satellite Imagery Products

Banghua Yan*

NOAA/NESDIS/OSPO

Matthew Lazzara^{1,2} and Rick Kohrs¹

¹UW-Madison/CIMSS and ²Madison College

*Other Contributors: David Mikolajczyk, J. Guo, C. Davenport, A. Irving, and J. Key

Outline

- Significance
- Composite Methodology Briefing
- NOAA NRT Composite Imagery Product Briefing
- Product Access Information

NOAA OFFICE OF SATELLITE AND PRODUCT OPERATIONS NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVICE

Significance of Arctic Composite Imagery Products

- Improves operational forecasting for the North Pacific and North Atlantic from 50°N to 90 °N in the following fields:
 - Climate (Climate Observations and Monitoring)
 - Weather and Water (Local Forecast and Warnings; Coasts, Estuaries & Oceans)
 - Understanding weather patterns and phenomena, ultimately improving forecasts, e.g., high-latitude atmospheric motion vectors from composite satellite data (Lazzara *et al.*, 2013)
 - Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) project
 - Commerce and Transportation
 - Marine Transport Systems
 - Marine Weather
 - Surface Weather

NOAA OFFICE OF SATELLITE AND PRODUCT OPERATIONS NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SE

Project Background

- The Arctic Satellite Composite Project, originally funded by National Science
 Foundation, was funded since 2012 by NOAA/NESDIS Satellite Product and
 Services Review Board (SPSRB) to generate near-real time (NRT)
 POES/GOES Arctic composite imagery products over Arctic polar region of
 the globe
 - The algorithm and code were developed by University of Wisconsin Space Science and Engineering Center (SSEC) (Atmospheric Research, Kohrs *et al.*, 2014).
 - Non-operational Arctic composite images of various wavelengths over the Arctic polar region of the globe are also run at SSEC (*Lazzara et al.*, http://arctic.ssec.wisc.edu/).

(Reference: Atmospheric Research, Kohrs et al., 2014)

OSPO Environment IT Architecture for Arctic Imagery Products

NRT Arctic GOES/POES Composite Imagery Operational Product Specifications

• Products:

• Near-real time 4-km hourly Arctic GOES/POES composite imagery products.

Satellite Imagery Bands

- Visible (~0.65 μm): VIS
- Shortwave Infrared (3.7 to 3.9): SW

NOAA OFFICE OF SATELLITE AND PRODUCT OPERATIONS

- Water vapor (~6.7 μm): WV
- Infrared (~11.0 μm): IR
- Longwave Infrared (~12.0 μm): LW

Timeliness and Latency

• Composites are made hourly, however for inclusion of as much satellite data as possible, they are made approximately 3 hours after the target image time

• Formats:

McIDAS Area, netcdf, and gif

NOAA OFFICE OF SATELLITE AND PRODUCT OPERATIONS NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVIC

Ingested GOES/POES Satellites Data

- Geostationary satellite imagery:
 - GOES-13 (East)
 - GOES-15 (West)
 - Meteosat-7
 - MSG-10
 - Himawari-8
- Polar orbiting satellite imagery:
 - NOAA-18
 - NOAA-19
 - Metop-A
 - Metop-B
 - Aqua
 - Terra

GOES Ingest Data Band Description

Catallita	Income Trans	Band	
Satellite	Image Type	Number	Wavelength
GOES- East	Visible	1	0.65 µm
	Shortwave IR	2	3.90 µm
	Water Vapor	3	6.80 µm
	Infrared	4	10.7 µm
GOES- West	Visible	1	0.63 µm
	Shortwave IR	2	3.90 µm
	Water Vapor	3	6.70 µm
	Infrared	4	10.7 µm
	Visible	1	0.60 µm
Meteosat Second Generation	Shortwave IR	4	3.90 µm
	Water Vapor	6	7.30 µm
	Infrared	9	10.8 µm
	Longwave IR	10	12.0 µm
Meteosat First Generation (INODEX)	Visible	1	0.75 µm
	Infrared	8	11.5 µm
	Water Vapor	10	6.90 µm
Himawari-8	Visible	3	0.64 µm
	Shortwave IR	7	3.90 µm
	Water Vapor	9	6.90 µm
	Infrared	13	10.4 µm
	Longwave IR	15	12.4 µm

POES Ingest Data Band Description

		Band	
Satellite	Image Type	Number	Wavelength
Terra MODIS	Visible	1	0.64 µm
	Shortwave IR	20	3.78 µm
	Water Vapor	27	6.76 µm
	Infrared	31	11.0 µm
	Longwave IR	32	12.0 µm
Aqua MODIS	Visible	1	0.64 µm
	Shortwave IR	20	3.78 µm
	Water Vapor	27	6.76 μm
	Infrared	31	11.0 µm
	Longwave IR	32	12.0 µm
NOAA-18	Visible	1	0.64 µm
	Shortwave IR	3	3.90 µm
	Infrared	4	10.4 µm
	Longwave IR	5	12.4 µm
NOAA-19	Visible	1	0.64 µm
	Shortwave IR	3	3.90 µm
	Infrared	4	10.4 µm
	Longwave IR	5	12.4 µm
METOP-A	Visible	1	0.63 µm
	Shortwave IR	3	3.74 µm
	Infrared	4	10.8 µm
	Longwave IR	5	12.0 µm
METOP-B	Visible	1	0.63 µm
	Shortwave IR	3	3.74 µm
	Infrared	4	10.8 µm
	Longwave IR	5	12.0 µm

University of Wisconsin (Himawari-8 Missing)

No data coverage Two or more satellites overlap OSPO

Merging Single Satellite Imagery into Composite Imagery: An Example

(a) minutes past nominal - 10

(b) minutes past nominal - 20

(c) minutes past nominal - 30

(d) minutes past nominal - 40

(e) minutes past nominal - 50

(f) minutes past nominal - 60

(g) minutes past nominal -130

(h) minutes past nominal -140

(i) minutes past nominal -150

NRT Arctic Composite Imagery Products: Animation Examples

Infrared Band

Shortwave Band

Longwave Band

Visible Band

Water Vapor Band

Arctic Composite and GFS Model Data

Cold Front Analysis, GFS (Orange Arrows), Composite (White Arrows)

NRT Arctic Composite Imagery Products: OSPO <u>Web-based QA Monitoring Tool</u>

- Monitor in near real time hourly product imagery at five bands
- Monitor up to 7 days of product imagery
- Display current day animated imagery

Examples:

SW Band

WV Band

15

NRT Arctic GOES/POES Composite Operational Product Data Flow

NOAA OFFICE OF SATELLITE AND PRODUCT OPERATIONS NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFO

NRT Arctic Imagery Product Access Information

• DDS/PDA

- The Arctic GOES/POES composite imagery in NetCDF format
- Submit a Data Access Request (DAR) form to nesdis.data.access@noaa.gov for approval
- ADDE
 - The GOES/POES composite imagery in McIDAS Area
- ESPC satepsanone ftp site
 - ftp://satepsanone.nesdis.noaa.gov/7day/arctic/ (gif format only)
 - ftp://satepsanone.nesdis.noaa.gov/2day/arctic/

(standard netcdf and McIDAS Area formats)