Threshold events and Lesser
This Definition of a
Algorithm to maintain
minimum heat index
98
degree.

A Threshold for 98
°
work
these
usually
Extreme Event (HIEE)
index
attended
and
attempts
to
humidity
and
Extreme Event (HIEE)
accurate
cases
and

death
from
hot

daytime
and

Mesoamerica and Caribbean Region
Nazario D. Ramirez1, Jorge E. Gonzalez2, Joan M. Castro3, Moises Angeles4, Cesar M. Salazar1, Eric Harmsen4, and Nathan Hosannah2
1Department of Industrial Engineering, University of Puerto Rico, Mayaguez, PR, nazario.ramirez@upr.edu, cma3992@gmail.com
2Department of Mechanical Engineering, The City College of New York, New York, NY, jgonzalez@me.ccny.cuny.edu, mangesles@ccny.cuny.edu, nhosannah@gmail.com
3Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR, joan.castro@upr.edu
4Department of Agricultural Eng., University of Puerto Rico, Mayaguez PR, harmsen1000@hotmail.com

Introduction
A Heat Index Extreme Event (HIEE) is a persistent period of excessively hot weather event and varies according to the climate characteristic of each region. Thus, a HIEE is characterized for having a significant temperature deviation from the normal climate characteristic of a given region. The Heat Index is attributed to increments in air temperature and high relative humidity. In several countries, the extreme events mostly occur during summer months and typically correspond to the rainy season, where high temperature and relative humidity are combined in such a way the rainfall is suppressed creating high pressure with extreme hot weather. It has been documented that extreme heat events put a lot of stress on the human body and can lead to serious health conditions such as heat exhaustion, heat stroke, or death from hyperthermia, agricultural devastation, and significant consumption of energy due to increased use of air conditioning.

Estimation of Heat Index
There are several methods to estimate heat index. In this work we adopted the NWS approach, described in Anderson et al. (2013). They analyzed whether each algorithm produced heat index values consistent with Steadman’s original apparent temperature (Steadman 1979) and found that the algorithms were inconsistent across studies. They concluded that the NWS algorithm provides reproducible and consistent environmental results. In the MAC region few estimates of heat index fall outside of the expected domain derived by Steadman (1979) and in those cases the heat index values were adjusted to the maximum values derived by the NWS (NOAA/NWS, 2016).

Heat Index Extreme Event (HIEE)
An extreme heat event is usually based only on daily maximum air temperature above a certain value that persisted for several days. However, the maximum air temperature does not account for the human perception temperature, and some human stresses derived from both temperature and humidity is missing. Thus, for places with high values of relative humidity, a more accurate definition of extreme heat events should be based on the heat index, which is the combination of air temperature and relative humidity. This is especially important when weather conditions contribute to prolonged thermal perception from the daytime to nighttime and maintain this extreme hot event for several days.

Data Sets
Thirty five years (1980-2014) of hourly data from the ground station were used to perform heat wave analyses. The Global Historical Climatology Network (GHCN), the Cooperative Observations Network (COOP Network) and other sources for weather station data are included in a single file through the National Climatic Data Environmental Information (NCDEI). Data extracted from ground stations were used to study the characteristics and frequency of the extreme heat events in the MAC region. Ground station data recorded the real and inherent behavior of the atmosphere and reveals the actual climate variability.

Definition of a HIEE in the MAC region
This work focuses on understanding the extreme hot events in the MAC region (5-30° N and 90°-60° W) and how these events have evolved throughout time. The Caribbean is divided into the Lesser and Greater Antilles islands, and Mesoamerica includes parts of Mexico, Central America and the North part of South America. The HIEE in the MAC region is defined in terms of heat index rather than pure air temperature because during most of the year there are high values of air temperature and relative humidity at the surface. HIEE definition must include observations of the hot behavior during day and night times. This is a critical weather conditions since there are events with many consecutive days in which the maximum daytime heat index exceeds threshold percentile in the MAC region. Therefore, the HIEE in the MAC region is defined as an extreme heat event that the maximum daytime heat index and the minimum nighttime heat index both exceed the corresponding 98th percentiles and this hot event must persist for at least 2 consecutive days.

Results
The results extreme heat events are organized into three parts: The first part presents a procedure to estimate the 98th percentile for station. The second part describes the characterization of extreme heat index events based on duration and intensity; i.e., bivariate and marginal probability distributions are analyzed. The seasonal variations of extreme heat events are analyzed and the definition of extreme heat wave and the accumulated heat wave intensity are introduced in this part. The third part presents the analysis of annual frequency of extreme heat events as a potential response of the global climate change.

Figures show inter annual variability of extreme heat events based on 98 percentile. Distributions of heat wave events are presented in terms of duration and relative intensity of a heat index extreme events.

Characteristics of HIEE
The major characteristics of the extreme heat events are the duration and the intensity, and are the parameters that determine the severity of the hot events. Since the intensity depends on the local climate characteristics of the station a relative intensity is used in the analysis, rather than absolute intensity. The strength of hot events can be derived using the combination of intensity and duration of the hot events. Due to the fact that the intensity of a heat wave depends on the climate characteristics of the referring area the comparison among several extreme heat events should be performed in terms of the relative intensity. Thus, to rank the extreme heat events in terms of their strength a simple parameter must be derived based on the combination of duration and intensity. This parameter is introduced in this work and will be called the accumulated heat wave intensity (AHWI). This parameter takes into accounts both duration and intensity to accurately measure the strength of a heat wave and is defined as follows:

\[
AHWI_j = \sum_{t=1}^{n} H_{i,j,t} - P_{98,i,j}
\]

where \( H_{i,j,t} \) is the heat index observed at hour \( t \), and at the \( j \) th geographical location; \( P_{98,i,j} \) is the 98th percentile at hour \( t \) and computed at the \( j \)th geographical location, and \( n \) is the duration of the heat wave expressed in hours.

Figures 8 show the air temperature, the relative humidity and Accumulated heat wave intensity. Illustrated in the left the extreme heat events characterized by HIEE before, during, and after the heat wave that occurred in the Miami station in August 17, 2010.

Summary
In this work, HIEE in the MAC region is defined as an extraordinary hot event that the maximum daytime heat index and the minimum nighttime heat index both exceed the corresponding 98th percentiles for at least 2 consecutive days. The threshold for minimum and the maximum heat index for the Lesser Antilles Islands are 32 °C and 42 °C, for the Greater Antilles Islands are 29 °C and 44 °C, and for Mesoamerica are 30 °C and 50 °C, respectively. A bivariate probability distribution of duration and relative intensity, and the corresponding marginal distributions, as well as the conditional probability distribution were developed. These distributions were used to derive practical applications. It was found the average duration was 2.57 days and standard deviation of 0.76 days. The maximum relative intensity during heat waves shows an average of 4.3 °C and standard deviation of 2.15 °C where, relative intensity is the excess of heat index over the maximum threshold. It was found that 78% of heat waves lose equal or less than 3 days, and 60% exhibit a relative intensity equal or four 4 °C.

References


To understand the behavior of the atmospheric variables during heat wave episodes it may be useful to observe the variables before and after the event. To do this analysis the NARR data can be used as a potential source of information. The nearest grid to a given station was selected to compare observations versus reanalysis data of the following variables: relative humidity, and air temperature.