

NOAA Water Resources Monitor and Outlook

Andrea J. Ray, NOAA/ESRL Physical Sciences Division,

Michelle Stokes, NOAA Colorado Basin River Forecast Center, and the WRMO steering team:

Robert Hartman - NWS California-Nevada RFC
Joe Intermill - NWS Northwest RFC

Russ Vose, Michael Brewer, & Michael Kruk - NOAA/NESDIS, NCEI

Heather Yocum - University of Colorado Boulder Jeff Zimmerman - NWS Western Region

Headquarters

Kevin Werner - NWS Headquarters

Veva Deheza – NIDIS

AMS 2017; 25 January, 2017

Overview

- Back ground on water supply forecasting
- Need for a consistent product across basins
- enhancements to existing products; prototypes

13 NOAA River Forecast **Centers (RFCs)**

Streamflow forecasts at hundreds of locations across the country

Water Supply Forecasts in the West

- Driven by mountain snow melt
- 6 RFCs provide water supply forecasts to support water resources managers decisions
- Many large water suppliers in the West get water from more than one major basin

Water Supply Forecasts

Used for

- Reservoir operations
 - Irrigation/Food Supply
 - Power generation/Price of electricity
 - Flood control
- Water supply to communities
- Endangered species
- Recreational uses/Tourism
- Drought information
- Major users: Fed, state and quasi-govt managers who in turn provide information to others

Increasing in importance of water supply'

- Population increasing in water scarce areas
- Impacts of climate change
- Growing demand due to environmental vulnerabilities
- Power generation
- Competing demands
- More and more scrutiny, requests for more and more information
- In the west, serve > 25M water users

Ensemble Streamflow Prediction (ESP) Probabilistic Forecasts

- Start with current conditions (from the daily model run)
- Apply precipitation and temperature from each historical year (1981-2010)
- A forecast is generated for each of the years (1981-2010*) as if, going forward, that year will happen
- This creates 30 possible future streamflow patterns. Each year is given a 1/30 chance of occurring

Ensemble Streamflow Prediction method (cont)

5

- 1. Select a forecast window
- 2. Select a forecast variable
- Model derives a distribution function
- 4. 50% exceedance value = most probable forecast
- 5. Correct for model bias

Need for a consistent product and enhancements

- Challenges: Each RFC has a separate webpage for its forecast area
 - Challenge for states with multiple basins, e.g CO, UT, WY
- Feedback from user studies and stakeholder meetings that's not yet incorporated in products, better:
 - Documentation & user guide
 - Verification information
 - Potential to incorporate climate outlooks: NOAA CPC week 3-4, monthly, seasonal outlooks
 - Seasonal water outlook envisioned based on CPC outlooks and other analysis

Need for a way to see contextual information and supporting data, now often on other sites:

- Snow information (observed)
- Soil moisture information
- Temperature and precipitation
- Reservoir conditions

Need for a consistent product and enhancements

- Challenges: Each RFC has a separate webpage for its forecast area -> next slide
 - Challenge for states with multiple basins, e.g CO, UT, WY
- Feedback from user studies and stakeholder meetings that's not yet incorporated in products; they request better:
 - Documentation & user guide
 - Verification information
 - Potential to incorporate climate outlooks: NOAA CPC week 3-4, monthly, seasonal outlooks
 - Seasonal water outlook envisioned based on CPC outlooks and other analysis

Need for a way to see contextual information and supporting data, now often on other sites:

- Snow information (observed)
- Soil moisture information
- Temperature and precipitation
- Reservoir conditions

A single source for westwide water resource products (prototype for national)
Landing page image

- At a glance status
- Select a forecast point for additional information

Prototypes: forecast traces

Communicating Forecast

Forecast Verification (2016)

2016 Water Supply Verification - April

Vegas

MOJAVE

DESERT

Tijuana Mexicali

CALIFORNIA.

Angeles

San

Forecast Month
January
February
March
April
May
June

Red indicates current year forecast had a higher error than the ESP model

Blue indicates that the current year forecast had lower error than the ESP model

Santa Fe

Albuquerque

MEXICO

COLORADO

PLATEAU

National

NOAA.GOV | ESRI, HERE, DELORME, FAO, NOA...

Phoenix

Tucson

SONORAN

% Error Difference

No Data

-45 - -35

-35 - -25

-25 - -15

-15 - -5

5 - 15

15 - 25

25 - 35

Benefits & upcoming features

Benefits:

- One location for all forecasts westwide, eventually nationally
- Updated daily; Options for user-customization
- Based on user needs & feedback, including User defined periods,
- Documentation & user guide
- Verification information

Upcoming Features:

Supporting data, currently not easily viewed from RFC pages:

- Snow information (observed)
- Soil moisture information
- Temperature and precipitation
- Reservoir conditions
- Climate outlooks: NOAA CPC week 3-4, monthly, seasonal outlooks
- Seasonal water outlook envisioned based on CPC outlooks and other analysis

Comments on observations

- River Forecast Centers depend on obs and data with partner agencies, not just data from NOAA: USGS streamflow gages; obs and forecasts for smaller streams by Dept. Ag/NRCS; NRCS soil moisture; NASA remote sensing
- Snow obs & data are critical (NRCS snotel, NOAA/NASA SNODAS, etc)
 - In the west, snow is a reservoir
- Additional SNOTEL sites in areas that are poor in data have the potential to improve the water supply forecasts.
- "We always need more snow information"

Thank you

Andrea J. Ray, NOAA/ESRL Physical Sciences Division,

Andrea.ray@noaa.gov

303-449-9733

Michelle Stokes, NOAA Colorado Basin River Forecast Center

Michelle.stokes@noaa.gov

801-524-5130 ext 322

 For more info: CBRFC.noaa.gov/WRMO, beta available in mid-2017

The Take Away

- Overall, CBRFC forecasts performed well throughout much of the basin this season
 - Dry and warm February and March conditions, coupled with dry soil moisture conditions, impeded runoff
 - An unusually wet May negatively impacted forecast performance in the Green River Basin
- Great Basin forecasts were impacted by early runoff in March, but some areas in the north did benefit from May precipitation
- Lower Colorado River Basin did not realize forecasted wet El Niño conditions

