Introduction

Region Selection

- account for 86% of the nation's total snowstorm losses (1).

What is a Blizzard?

- The NWS defines a blizzard as having 3+ hours of:
- change
- Snowfall's response involves two external forcings:
- Increases in precipitation, implying more snowfall.
- snow fraction (3).
- frequent or intense

- into account human perception of snowfall
- Analyze change in blizzard frequency with CO₂ doubling
- individual variables (snowfall, winds)

- 4. O'Gorman, P. A. (2014). Contrasting responses of mean and extreme

Assessing East Coast Blizzards under Climate Change

Tyler Janoski^{1,2}, Dr. Anthony J. Broccoli^{1,2}, Dr. Sarah Kapnick², Dr. Nathaniel Johnson² ¹Department of Environmental Science, Rutgers University ²NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ

Snowfall patterns Figure FLOR 1990 **CM2.5** using Control Atmosphere. A. Mean snowfall patterns on the East Coast. Note that FLOR captures orographic influences on snowfall as well as finer spatial resolution processes, such as lake-effect snow in New York and Ontario. B. The 99.8th percentile of two-day snowfall. This is the threshold this study's blizzard in used definition with the exception of cases where this threshold was below .5cm. Note: to estimate snow depth in inches from liquid multiply liquid equivalent, equivalent by 4.

patterns after CO₂ doubling. A. The difference between annual snowfall in the control run and the experiment (700ppm) run. All areas experience decreases with CO_2 doubling. B. The change in the number of unique two-day periods with snowfall meeting or

exceeding the control's 99.8th

decreases with increased CO_2 .

percentile.

Red

signifies

- excluded.
- increases
- precipitation
- definition
- and snow cleanup

TJ acknowledges support from the NOAA Office of Education and the Hollings Scholarship Program for this internship, as well as his mentors Dr. Broccoli, Dr. Kapnick, and Dr. Johnson for their guidance.

Regional Response of Blizzards

Percent Change in Blizzard Frequency with Double CO₂

-100-80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 20 Percent Change in Blizzard Frequency with Double CO₂

Figure 4: The percent change in the number of blizzards after **CO₂ doubling.** Blizzard counts reflect only unique blizzard instances and include no overlapping days. Areas where there were too few blizzards to provide meaningful statistics were

Conclusions

Mean snowfall decreases in this region with CO_2 doubling, which is consistent with previous studies

Extreme snowfall's response to CO₂ doubling is muted compared to mean snowfall, with some areas experiencing

Blizzards tend to decrease in the South and coastal areas where temperature forcing may outweigh increases in

Blizzard frequency, according to this study's definition, increases in high latitudes and high altitudes (Appalachians)

Blizzard response to climate change depends on blizzard

• Important for climate adaptation: infrastructure, urban planning,

Future Work

Results are preliminary, continuing work for senior thesis Use gridded observational data to validate wind speed threshold appropriate to model's spatial and temporal resolution Analyze individual components of blizzards to determine what causes changes in blizzard frequency

Acknowledgements