NOWCASTING – NOW AND THEN

Zoltan Toth and Steve Albers¹

Env. Info Proc. Tech. Conf. Oct. 8 2014, 3:45 pm SIMULATED / OBSERVED CLOUD IMAGE

OUTLINE / SUMMARY

Current status

- Traditional nowcasting methods empirically / statistically based, subjective
- NWP not ready yet Last frontier
- Satellite-derived products fill gap in support of nowcasting
 - Products of opportunity derived directly from selected set of observations
 - Fragmented approach
 - · Disconnected observations, methods, production streams, teams

NWP-based nowcasting

- Synthesize all obs. & NWP data into common reference state (5D analysis)
- Derive all user products from common reference state
- Comprehensive, potentially high quality & consistent guidance

• Examples

- Simulated Weather IMagery (SWIM)
- Probabilistic tornado indicators

Challanges / opportunities

Quality and timeliness of 5D analysis

NOWCASTING

Definition

– Fine scale analysis and \sim 0-3 hour forecast

• Context

 Larger spatial / longer timescales covered by dynamical (NWP) approach

Traditional approach to nowcasting

 "A human given the latest radar, satellite and observational data will be able to make a better analysis of the small scale features present and so will be able to make a more accurate forecast for the following few hours"

Wikipedia on Nowcasting, 2017

Dynamical nowcasting

- What's the holdup? Model or its initialization?

NWP PARADOX

NWP basics

- Initial value problem most accurate info about system at initial time
 - Due to chaos, forecast skill should gradually drop with lead time
- Most weather forecasts beyond ~6 hrs based on NWP
- Reality
 - Paradoxically, fine scale measures of *forecast skill increase w lead time*

Explanation

- Large scales
 - Analyzed well in initial condition
 - · Skill drops with lead time
- Fine scales
 - Not or poorly analyzed / initialized
 - Model forecast creates fine scale motions consistent w large scales
 - Not a "forecast" per se but a "simulation"
 - => Skill initially increases with lead time

TRADITIONAL NOWCASTING TECHNIQUES

Observations

- In-situ, radar, satellite

Analysis

- Manual (or computer aided) analysis of selected observations
- Spatial mosaic of observations (eg, radar)
- Derived products (eg, satellite)

• Forecast

- Subjective extrapolation
- Advection of existing systems
 - Trend in recent past can be considered
- Statistical enhancements to advection & trends
- Short of a theoretically founded NWP solution to Nowcasting
 - Traditionally generated nowcast products fill void

PRODUCT GENERATION SCHEMATIC

TRADITIONAL PRODUCT GENERATION

Knowledge base - Invaluable

- Direct relationships (physical and/or statistical) between
 - Selected set of observations (& possibly NWP background)
 - Specific user products (variables or phenomena of interest) Products of opportunity
 - Cloud drift winds, cloud top pressure, overshooting cloud tops, cloud optical depth, etc

• Input data - Only selected / individual observations used

- Multiple versions of same product
- Suboptimal products
- Inconsistency across & in quality of products
- Methods Large set of disconnected algorithms w partially overlapping functionalities
 - Inefficiencies in development, operations, maintenance

Workflow – S³

- Stand-alone / segmented / stove piped

Resources scattered across stovepipes, benefitting indiv. products

NWP-BASED PRODUCT GENERATION

NATURE

PRODUCTS CATIONS

ter

Foo

Health

Cities

PyeongChang 2018

NWP-BASED PRODUCT GENERATION

- Modularize by methodology Not by individual obs. or products
 - Transparent design, systematic & simplified approach, efficiency
 - Potential for faster progress, clearer focus, integration, enhanced collaboration

All resources come to bear on common problems, benefitting all

- Simulate nature Digital representation (common reference state)
 - Synthesize all observations using NWP first guess & DA methods
 - Comprehensive 5D dataset 3D in space, 1D in time & across variables
 - Elements of product generation algorithms to be used in obs. operators
 - Some pre-generated products can be "assimilated" for expediency
 - Products result of translucent filter of obs Variational use of obs preferred
- Derive all products from simulated nature (common reference state)
 - Potentially improved quality due to use of all obs. & model constraints
 - Consistency across products
 - Elements from "product generation" algorithms can be reformulated & used₁₁

WILL IT WORK?

Challanges

- High fidelity
 - Use of spatially/spectrally detailed obs. (multiscale approach), balance
- Short latency
 - Efficient DA (multiscale approach); adequate computational resources
- Streamlined workflow
 - Realign satellite community, reconfigure traditional algorithms into repositories

• Examples

- All-weather imagery from 5D cloud analysis
- Tornado warning NSSL
- Radar reflectivity nowcasting OU, LAPS
- Visibility around topography

Practical approach

- 24-Apr-2016 19:30:00 UTC
- Gradually shift resources from traditional to NWP "product generation"
 - Focus developmental resources on NWP-based approach
- Establish repositories, adopt Object Oriented design
 - Obs operators, DA JCSDA; Model NGGPS; Product generation ?
- Maintain traditional schemes until NWP approach supercedes them

3D 500 m CLOUD ANALYSIS

Courtesy Steve Albers NOWCASTING WITH LOCAL ANALYSIS AND PREDICTION SYSTEM – LAPS Clouds as seen from top of DSRC building in Boulder by LAPS ANALYSIS

16:45 UTC Jul 6, 2014 *Camera images as independent validation*

ALLSKY CAMERA

SIMULATED WEATHER

Courtesy Steve Albers

3D 500 m CLOUD ANALYSIS - LOOP

Courtesy Steve Albers Unique feature of LAPS, critical for WOF, Nextgen, etc

16:30-18:45 UTC June 27, 2014, 15-min frequency

ALLSKY CAMERA

GSI hybrid DA for May 8th 2003 OKC Tornadic Supercell Xuguang Wang et al., 2015, MWR, to be submitted

Radar reflectivity 22:00 UTC 1-hr Prob. fcst. Initialized 2200 UTC

Isolated supercell 2210 – 2400 UTC with F-4 tornadoes in Moore & Oklahoma City (OKC) between 2210—2240 UTC

3km radar+satellite 15-min update EnKF initialization

Real-time 90-min Prob. Updraft Helicity Forecast (>25m²/s²)

OPPORTUNITIES / PROMISING AREAS

Observational operators

 Harvest possible schemes from satellite product generation algorithms (CRTM, etc)

Data assimilation

- Thermodynamically balanced microphysical / aerosol parameters
- Adjoint-based 4DVar w ensemble-based covar. Success at ECMWF
- Multiscale technique

Numerical models – R³

- Resolution (space), resolution (physics), resolution (probabilities)

Product generation

- Reuse elements of traditional product generation algorithms

Expand UPP

OBSERVATIONS LEAD THE WAY

Which way?

- Disjoint suboptimal products based on subsets of observations
 - "React to individual snippets of nerve impulses"
- Integrated, holistic, digital depiction of reality
 - "Process totality of sensory input & form view before reacting"

Invest in advanced use of observations

- Modular NWP-based approach to nowcasting
- Rational study of observational needs in that context

BACKGROUND