Improvements to Ozone Mapping Profiler Suite (OMPS) Sensor Data Record (SDR)

*C. Pan1, F. Weng2, T. Beck2 and S. Ding3

* 1 ESSIC, University of Maryland, College Park, MD 20740; 2 NOAA NESDIS/STAR, College Park, MD 20740; 3 ERT, College Park, MD 20740

The AMS 97TH Annual Meeting
22 – 26 January 2017
Seattle, WA
• OMPS is one of five instruments on board the SNPP satellite launched in Oct. 2011. The second OMPS onboard JPSS-1 satellite will launch in Summer 2017.
• The OMPS heritage sensors are SBUV/2 and TOMS. OMPS provides ozone total column and vertical profile data that continues ozone daily global data with higher calibration accuracy and higher spatial and spectral resolution since 2012.

Onboard Calibrators
- Light-emitting diode provides linearity calibration
- Reflective solar diffusers maintain calibration stability
Two UV imaging spectrometers in Nadir system: NM covers 300 - 380 nm; NP covers 250 - 310 nm
Measure back scattered earth radiance, as well as solar irradiance. On-orbit calibration maintains high quality SDRs

One orbit measured NM/TC normalized radiance (N-value) at 331.6 nm from NM Spatial resolution 50 km (35 IFOVs) in the cross-track direction
Improvements to SDRs

• Higher spatial resolution data is requested by OMPS users
 – SNPP OMPS acquires higher spatial science data weekly
 – The JPSS-1 will provides the ozone vertical profile data at 50 km x 50 km beginning at launch and 17 km x 17 km ozone total column data afterwards.

• On-orbit Spectral variation causes about 1.0% errors in ozone retrieval
 – Analysis of in-flight data shows the sensor spectral wavelength variation exceeded performance required 0.02 nm. An empirical wavelength correction has been applied to NM Sensor.
 – JPSS-1 OMPS missions will likely exhibit similar orbital variations that can be corrected using a similar methodology.

• JPSS-1 OMPS instrument designed changed for a better on-orbit performance
Algorithm Enhancement

Major changes

- Upgraded Flight Software
- Rice decompression
- Four new APID data
- J1 spacecraft ID
- J1 algorithm LUTs
- NM sparse ST process

New Codes

Existing codes

SDR processor

Verified RDR

Timing Patterns

Sample Tables

Ground PIs

SDR

Offline Processing/Archive

kDR

APID Filter

Decompressor

Aggregator

vRDR (Med-Res)

SDR processor Sparse Counts WL Shift

S-NPP Hi-Res compressed or standard EV

J01 Hi-Res compressed

Dark Correction

Smear Correction

Stray Light Correction

Convert Counts to Radiances

Adjust Solar Wavelength

22–26 January, 2017

The AMS 97th Annual Meeting
Wavelength Registration

- Spatial and spectral 2-D CCD
- Photosensitive region has 35 spatial EV cells and 196 spectral channels
- Split frame transfer, two halves identical CCD.
SO2 Index

• SO2 index cross-track IFOV variation

• Residual error are caused by EDR V7 TOZ algorithm

• Data comes from OMPS NM EDR products INCTO SO2 2015/07/01
Radiance error is the percent difference between OMPS and MLS flying on Aura.

Irradiance error is the percent difference between observed solar flux and modeled solar synthetic flux.
Wavelength Correction

- Computed wavelength shift

- Modeled wavelength shift

- Calibration error < 0.1 nm

Modeling Equation:
\[f(x) = a_1 \sin(b_1 x + c_1) + a_2 \sin(b_2 x + c_2) + a_3 \sin(b_3 x + c_3) + a_4 \sin(b_4 x + c_4) \]

X: mission time (days)
F(x): wavelength shift

Correlation with thermal gradients (housing temperature change)
Linear model: \(f(x) = p_1 x + p_2 \)
Coefficients (@ 95% confidence bounds):
p1 = 32.68 and p2 = 0.006929

Goodness of fit:
SSE: 1.32
R-square: 0.8
RMSE: 0.1549
Solar Irradiance Calibration

\[\bar{I}(\lambda_0) = \frac{\int I(\lambda) S(\lambda) d\lambda}{\int S(\lambda) d\lambda} \]

- \(\bar{I}(\lambda_0) \): slit-averaged values
- \(\lambda_0 \): central slit wavelength
- \(\lambda \): wavelength
- \(S(\lambda) \): spectral response function (slit function)
- \(I(\lambda) \): monochromatic irradiance

Solar activity error

Wavelength registration error

Optical degradation error
Solar Irradiance Errors

Before

After
Normalized Radiance Error

Previous Error

Current Error

Normalized Radiance Error %

-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
J1 Instrument Re-Design

- The Limb Profiler will not be present for JPSS-1
- NM slit redesigned to reduce irregular edges
- Optical mounts redesigned to improve boresight stability
- Modified optical alignment permits wavelengths up to 420nm to be measured
- Reflective quasi-volume diffusers (QVD) maintains calibration stability

Ratios of solar flux measurements NM (left @solar position 4) and NP (right)
OMPS in-flight performance has been greatly improved through sensors’ on-orbit spectral calibration.

The calibration lessons learned from the SNPP OMPS present reasonable and feasible opportunities for improving the future JPSS-1 OMPS data products.

JPSS-1 OMPS is expected to provide science data with higher fidelity compared to the SNPP OMPS.
Any Questions?

... THANK YOU ...