Introduction

Individual eftects of temperature and soil moisture on plants are well
studied. Higher temperature below an optimal value increases GGross Primary
Productivity (GPP). Ecosystem Respiration (ER) increases with warming,
Higher soi1l moisture increases both GPP and ER until saturation. However,
the associated effects ot temperature and soil moisture on forest ecosystems
are more complex. The correlations between carbon tluxes and temperature
or soll moisture are categorized as: 1) negative, negative; 2) negative, positive;
3) positive, negative; and 4) positive, positive. Based on the climate and de-
scription of each forest, we propose the following mechanisms to explain the
respective correlations: 1) soil moisture limits GPP or ER; 2) temperature sur-
passes the optimal GPP; 3) GPP or ER changes as expected; and 4) tempera-
ture dominates GPP or ER. 'The Net Ecosystem Productivity (NEP) 1s deter-
mined by the direction and magnitude ot changes in GPP relative to ER.

Data & Method

'lable 1. Data Sources

Dataset |Source | Grid resolution

M e T CRU3.23 0.5°x05° 1901 — 2014 [Harris et al.,

Temperature (T) 2014]

Penman-

Monteith PET

CRU3.10 0.5°x0.5° 1901 - 2009 [G. van der

Schrier et al.,
2016]

Ameriflux Level 4 gap-filled Varies [RDA at NCAR]

sites
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Figure 1. Eddy Covariance towers with their chimate categories. Cfa
= humid subtropical chmate; Csb = Mediterranean climate; Dtb =
humid continental chimate.
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Figure 2. Process ot data analysis. Thornthwaite PE'T (PET_th) 1s de-

rived from gridded mean air temperature (1) by T hornthwaite Equa-

tion [Willmott et al, 1983]. Derived P-E indices represent short term
droughts, while Palmer Drought Severity Index (PDSI) shows long

term droughts. Summer temperature and drought indices are corre-
lated with carbon fluxes from Ameritlux level-4 gap filled forest sites

RDA at NCAR, 2016].
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Figure 3. Percentage of sites with significant positive[+|, insignificant
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positive[(+)], nsignificant negative[(-)] and significant negative|-| correlations.

T'he correlations are between carbon fluxes (ER, GPP, and NEP) with tem-

perature (1), short term drought (P-E) and long term drought (PDSI). P <
0.1.
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e All three climates have warm summers and cold winters.
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Figure 5. Percentage of sites with each of the four temperature and
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Understanding the Associated Effects of Temperature and Soil Moisture on Summer Carbon Fluxes of Forest Ecosytems in the Contiguous United States

drought correlation combinations: 1) negative, negative [N/N]; 2) nega-

tive, positive [N/P]; 3) positive, negative |P/N|; and 4) positive, positive

[P/P]. Numerical values are weighted number of sites.
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* Summer 1n (fa 1s a wet season, while the Dtb has no wet and dry seasons.
* In Mediterranean chimate (Csb), the correlations ot GPP and ER with short term droughts difters significantly from long term drought (PDSI).
* bor all three climates, insignificant correlations of GPP and ER with temperature or drought can result in a significant correlation of NEP with temperature

or drought, and vice versa.

* None of the carbon fluxes 1n most D1b sites are limited by soil moisture.
* Short term droughts lmit the GPP ot Csb sites, while long term droughts do not, possibly because vegetation in the Gsb sites has adapted to dry conditions.
* Summer of (fa sites 1s more humid than winter, theretore ER and GPP are dominated by temperature. However, the NEP 1s limited by soil moisture.
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Figure 6. T he most common combination in each chmate.



