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1. INTRODUCTION      

     Recently completed is a piece of work exploring 
trends in the skill of weather prediction at lead times 
of 1 to 14 days for Melbourne, Australia – refer to 
Map 1 (Stern, 2008, Stern, 2017,Stern and 
Davidson, 2015). 

     Grams et al. (2006), referring to papers by Ebert 
and McBride (2000) and Baldwin and Wandishin 
(2002) note that: 

     “Summertime convective systems are among the 
most difficult weather events for operational 
meteorologists and numerical models to predict”. 

     Grams et al. (2006) continue: 

     “Verification of a quantitative precipitation 
forecast (QPF) made by a fine-grid numerical model 
for these small-scale features can be just as difficult.       

     Standard grid-based measures often result in 
scores that are not consistent with the subjective 
impression of the forecaster. 

     Traditional verification statistics severely penalize 
a precipitation system that may have been forecast 
with a small positional error or incorrect shape, with 
resultant low correlation coefficients, high root-
mean-square errors (rmse), and poor values of 
categorical statistics”.  

     The same comment may be applied to the 
verification of predictions of other weather elements. 

2. PURPOSE 

     An update (Stern, 2017) of the verification 
statistics documented by Stern and Davidson (2015) 
is included in the current paper. 

     In that context, the proposition discussed by Ebert 
and McBride (2000), Baldwin and Wandishin (2002) 
and Grams et al. (2006), is explored. 

     This is done in regard to how positional and timing 
errors in the prediction of synoptic scale systems 
extract a penalty, is explored utilising forecast 
verification data sets for: 

 Minimum temperature; 

 Maximum temperature; 

 Amount of precipitation; and, 

 Probability of precipitation. 
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     The methodology employed to achieve this 
demonstration is to separate the inter-diurnal 
component of the percent variance of the 
observations explained by forecasts, from the total 
percent variance explained by the forecasts. 

     By this means, the proposition is demonstrated to 
have validity in the context of predictions for a range 
of weather elements. 

 

Map 1 Location of Melbourne   
Source: http://www.ga.gov.au/placename  

3. DISCUSSION 

3.1 Minimum Temperature 

     Regarding minimum temperature (Figure 1), an 
overall increase in accuracy is evident. 

     For Day-1 predictions, 50% of the day-to-day 
variance in the observations was explained fifty 
years ago, but this has increased to 85%, now. 

     For Day 2-4 predictions, 40% of the day-to-day 
variance in the observations was explained twenty 
years ago, but this has increased to 75%, now. 

     For Day 5-7 predictions, 20% of the day-to-day 
variance was explained fifteen years ago, but this 
has increased to 50%, now – which is the level 
displayed by the Day-1 predictions fifty years ago. 

     It may be shown that in regard to the inter-diurnal 
(that is, day-to-day) minimum temperature 
fluctuations (Figure 2), small positional and timing 
errors in the forecasting of major synoptic systems 
do, indeed, extract a penalty on account of the 
resultant errors in the prediction of the day-to-day 
fluctuations.  

     To illustrate, for Day-1 predictions, the inter-
diurnal component of the variance explained is less 
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than 75%, whilst the total variance explained is 
greater than 80%. 

     For longer lead times, the proportional difference 
grows. 

     To illustrate, for Day-5 predictions, the respective 
components explained were 45% and 60%, whilst by 
Day-10, almost none of the inter-diurnal component 

of the variance is explained. 

3.2 Maximum Temperature 

     Regarding maximum temperature (Figure 3), an 
overall increase in accuracy is evident. 

     For Day-1 predictions, 50% was explained fifty 
years ago. Now, 85% is explained. 

     For Day 2-4 predictions, 30% was explained thirty 
years ago. Now, 80% is explained.  

     For Day 5-7 predictions, 20% was explained 
fifteen years ago. Now, 50% is explained. As was the 
case with minimum temperature, this is the level 
displayed by the Day-1 predictions fifty years ago. 

     Some skill, albeit of a modest level (about 15%), 
is displayed by the Day 8-10 predictions.  

     As for minimum temperature, it may be shown 
that small positional and timing errors in the 
forecasting of major synoptic systems extract a 
penalty on account of errors in the prediction of the 
day-to-day fluctuations (Figure 4).  

     To illustrate, for Day-1 predictions, the inter-
diurnal component of the variance explained is about 
80%, whilst the total variance explained is greater 
than 85%. 

     For longer lead times, the proportional difference 
grows, for Day-5 predictions, the respective 
components being also 50% and 65%.  

     Also as for minimum temperature, by Day-10, 
almost none of the inter-diurnal component of the 
variance is explained.  

3.3 Amount of Precipitation 

     For amount of precipitation forecasts, an overall 
increase in accuracy is evident (refer to Figure 5), 
albeit somewhat unsteady, with a peak shown during 
the very wet summer of 2010-2011 when some 
extreme events were well predicted.  

     It may be shown that small positional and timing 
errors in the forecasting of major synoptic systems 
extract a far greater proportional penalty (than for the 
minimum and maximum temperature predictions) on 
account of errors in the prediction of the day-to-day 
fluctuations (Figure 6).  

     To illustrate, for Day-1 predictions, the inter-
diurnal component of the variance explained is about 
50%, whilst the total variance explained is about 
60%. 

     For longer lead times, the proportional difference 
grows more rapidly (than for temperature 
predictions).  

     By Day-5, less than 10% of the inter-diurnal 
component of the variance is explained. 

3.4 Probability of Precipitation 

     Regarding probability of precipitation, 
improvement is evident for Day-1 and Day 2-4 
predictions, but not for longer lead times (Figure 7). 

     As for the amount of precipitation, it may be 
shown that small positional and timing errors in the 
forecasting of major synoptic systems extract a far 
greater proportional penalty (than for temperature 
predictions) on account of errors in the prediction of 
the day-to-day fluctuations (Figure 8).  

     To illustrate, for Day-1 predictions, the inter-
diurnal component of the variance explained is about 
40%, whilst the total variance explained is about 
55%.  

     For longer lead times, the proportional difference 
also grows more rapidly (than for temperature 
predictions), by Day-5, only about 10% of the inter-
diurnal component of the variance is explained.  

4. CONCLUDING REMARKS 

     To conclude, it is shown (from a set of graphics 
representing both the total and the inter-diurnal 
component of the variance explained by the 
forecasts) how one may quantify the extent to which 
positional and timing errors in the prediction of 
synoptic scale systems extract a penalty when 
traditional approaches to the verification of weather 
forecasts are applied.  

     The penalty is shown to be proportionally greater 
for precipitation predictions than for temperature 
predictions. 

     This may be due to the fact that whilst most day-
to-day changes in temperature are gradual, not-
withstanding the impact of the occasional sharp 
changes associated with the passage of cold fronts, 
most significant precipitation events are over within 
a day or two.  

     The relevance of the two different approaches to 
forecast verification, total variance and inter-diurnal 
variance, depends upon the needs of the client.  

     The inter-diurnal approach is more relevant to 
those planning for a particular activity on a certain 
day, for example, a wedding or a sporting event.  

     The total approach is more relevant to those 
planning for activities that stretch across a longer 
period, for example, hay-making or an extended 
holiday. 
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Figure 1 Long-term Trends in Percentage 
Variance Explained by Melbourne Minimum 
Temperature Forecasts (from Stern, 2017) 

 

Figure 3 Long-term Trends in Percentage 
Variance Explained by Melbourne Maximum 
Temperature Forecasts (from Stern, 2017) 

 

Figure 5 Long-term Trends in Percentage 
Variance Explained by Melbourne Precipitation 
Amount Forecasts (from Stern, 2017) 

 

Figure 7 Long-term Trends in Percentage 
Variance Explained by Melbourne Precipitation 
Probability Forecasts (from Stern, 2017) 

 

Figure 2 Percentage Variance Explained by 
Melbourne Minimum Temperature Forecasts 
(5-Years to Nov-2016) 

 

Figure 4 Percentage Variance Explained by 
Melbourne Maximum Temperature Forecasts 
(5-Years to Nov-2016) 

 

Figure 6 Percentage Variance Explained by 
Melbourne Precipitation Amount Forecasts (5-
Years to Nov-2016) 

 

Figure 8 Percentage Variance Explained by 
Melbourne Precipitation Probability Forecasts 
(5-Years to Nov-2016) 


