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ABSTRACT 
 

Chaff presents multiple issues for aviation, air traffic controllers, and the FAA, including false weather identification and areas where flight 
paths may need to be altered.  Chaff is a radar countermeasure commonly released from aircraft across the United States and is comprised 
of individual metallic strands designed to reflect certain wavelengths.  Chaff returns tend to look similar to weather echoes in the reflectivity 
factor and radial velocity fields, and can appear as clutter, stratiform precipitation, or deep convection to the radar operator or radar 
algorithms.  When polarimetric fields are taken into account, however, discrimination between weather and non-weather echoes has 
relatively high potential for success.  In this work, the operational Hydrometeor Classification Algorithm (HCA) on the WSR-88D is 
modified to include a chaff class that can be used as input to a Chaff Detection Algorithm (CDA).  This new class is designed using human-
truthed chaff datasets for the collection and quantification of variable distributions, and the collected chaff cases are leveraged in the tuning 
of algorithm weights through the use of a metaheuristic optimization.  A final CDA uses various image processing techniques to deliver a 
filtered output.  A discussion regarding WSR-88D observations of chaff on a broad scale is provided, with particular attention given to 
observations of negative differential reflectivity during different stages of chaff fallout.  Numerous cases are presented for analysis and 
characterization, both as an HCA class and as output from the filtered CDA. 

_____________ 

1. Introduction 

Military chaff has been utilized as a radar countermeasure 
around the world since World War II (De Martino, 2012).  Due to 
its metallic coating and specific cut lengths to resonate at a given 
incident frequency of electromagnetic energy (Hessemer 1961; 
Palermo and Bauer 1965), chaff can generate substantial radar 
cross sections that can disperse into large “clouds” of distributed 
targets (Pinson 1975; Harrison and Heinz 1963; Zrnić and 
Ryzhkov 2004 [referred to as ZR04 from this point forward];  
Fig. 1).  These targets simulate broad returns to an enemy radar 
system, leading to the potential for masking aircraft, warships, and 
missiles from enemy detection (Pode 1960). 

The utility and effectiveness of chaff has led to widespread use 
not only in the battlefield, but, logically, also as a training tool in 
the United States and abroad.  Due to its prevalence in training 
exercises, chaff can often be found across the national airspace in 
day-to-day aviation operations.  Chaff can be cut to different 
lengths in order to generate effective returns at a frequency of 
interest. 

  Since S-band (approximately 10-cm wavelength) radar 
systems are relatively common across the world, numerous types 
of chaff are cut to the appropriate half-wavelength size to offer 
optimal response at S band (Hall et al. 1984; Zrnić and Ryzhkov 
1999).  Therefore, with 159 S-band WSR-88D radars across the 
United States and world (Crum and Alberty 1993), chaff is often 
visible to forecasters, flight controllers, and the general public  
(e.g., ZR04; Ryzhkov et al. 2005; Murphy et al. 2016). 

Chaff can masquerade as stratiform precipitation, convective  
precipitation, a biological scatterer, combustion debris, and other 
potential targets owing to similar characteristics, especially in 
reflectivity factor estimates (Melnikov et al. 2008;  
Ryzhkov et al. 2005; Murphy et al. 2016).  Despite often 
dispersing in distinct linear segments after release from an aircraft, 
chaff’s eventual appearance can differ significantly from event to 
event and can be related to the 3-dimensional wind field, 
turbulence on multiple scales, and nearby meso- and microscale 
phenomena.  This means that when chaff is released near 
convective activity, for example, it can be difficult for algorithms, 
forecasters, and flight controllers to distinguish between chaff and 
convection using reflectivity factor estimates alone. 

Since the deployment of dual-polarimetric capabilities across 
the WSR-88D fleet was completed in 2013 (Doviak et al. 2000), a 
number of additional estimates have been made available to radar 
users (i.e., differential reflectivity, cross-correlation coefficient, 
and differential phase; Doviak and Zrnić 2006; Bringi and 
Chandrasekar 2005).  These additional estimates support new 
potential to make identification of chaff more straightforward, 
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leading to better separation of chaff (considered “clutter” to some 
weather radar users) from targets of interest to the user.  However, 
these additional dual-polarimetric data products are not available 
to all users (e.g., flight controllers), and can take considerable 
knowledge and training for accurate application to quickly identify 
chaff and separate it from weather.  While this may be relatively 
simple for a trained forecaster, other users may find such 
distinctions to be difficult or impossible to make.  For that reason, 
a viable chaff detector algorithm would be of use to the FAA, 
weather radar, and National Weather Service (NWS) communities. 

 

 
FIG 1: Bands of chaff (horizontal trails) in the reflectivity 

factor estimate on 12 February 2016 at the KBYX WSR-88D. 
 
Current target classification using the WSR-88D is performed 

primarily by the Hydrometeor Classification Algorithm (HCA; 
Park et al. 2009).  The HCA utilizes the concept of fuzzy logic to 
determine the most likely target type based on a series of 
approximate distributions and weights of different variables 
collected from radar estimates.  In the WSR-88D implementation, 
Park et al. (2009) describe the distributions and weights for the six 
following variables: 

 
• Reflectivity Factor 
• Differential Reflectivity 
• Cross-Correlation Coefficient 
• A Linearized Version of Specific Differential Phase 
• Standard Deviation of Reflectivity Factor 
• Standard Deviation of Differential Phase 

 
Through years of experimentation (e.g., Ryzhkov et al. 2005) and 
theoretical analysis (e.g., Bringi and Chandrasekar 2005), 
distributions of the six variables were determined for 10 different 
target types: 
 

• Ground Clutter/Anomalous Propagation (GC/AP) 
• Biological Scatterers (BI) 
• Dry Snow (DS) 
• Wet Snow (WS) 
• Ice Crystals (IC) 

• Graupel (GR) 
• Big Drops (BD) 
• Rain (RA) 
• Heavy Rain (HR) 
• Rain/Hail Mixture (HA) 

 
These distributions were simplified as non-symmetric trapezoidal 
functions in either one or two dimensions, convolved with 
appropriate data quality vectors, related to the altitude of the 
melting layer, and appropriately weighted to determine the most 
likely target type for a radar pulse resolution volume. 

The HCA method provides a statistical analysis tool to radar 
users that allows for rapid interpretation of the most likely target 
by combining much of the available information into a single 
product.  This is especially useful for users who are not as familiar 
with the intricacies of the dual-polarimetric estimates and desire an 
easy-to-understand product.  The method also provides 
opportunity for growth into additional target types that have 
distributions that differentiate them from the existing categories.  
Essentially there is the opportunity to improve upon classifications 
that erroneously cloak an alternate scatterer (classification) type.  
It is this technique that we seek to exploit for the development of a 
Chaff Detection Algorithm (CDA). 

Chaff detection with weather radar has been studied multiple 
times before, but has revolved solely around single-polarization 
techniques.  Specifically, Kim et al. (2013) focus on feature 
extraction based on spatial and temporal clustering, while Yu et al. 
(2016) utilize a tree-initialized genetic algorithm to develop a 
fuzzy scheme for detecting chaff using single-polarization radar 
data in South Korea.  Chaff has also been studied in the 
meteorological community as a tracer for storm and cloud 
entrainment (e.g., Moninger and Kropfli 1987; Jung and Albrecht 
2014). 

Dual-polarimetric radar is a powerful tool for characterizing 
chaff that is yet to be fully exploited.  The single most important 
attribute of chaff that allows for its discrimination in dual-
polarimetric radar data is its very high aspect ratio as a long, thin 
conductor.  This makes chaff extremely anisotropic, more so than 
any ice crystal or biological target.  For these reasons, it is sensible 
to move forward with chaff detection in the dual-polarimetric 
realm. 

This paper first describes the data collection strategy, and is 
followed by a description of methodology, results, and a short 
discussion regarding observations of negative differential 
reflectivity in chaff (a new finding of this study compared to 
ZR04).  The paper concludes with a summary of findings and 
upcoming work on the chaff detection topic. 

 

2. Data Collection 

Of key importance to this study is the collection of large 
datasets in order to provide enough variety to accurately determine 
the distributions of radar variables in chaff.  Previous 
characterizations of polarimetric variable distributions in chaff 
with weather radar have been presented (ZR04; Murphy et al. 
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2016), but with small datasets.  In ZR04, for example, only one 
case at one elevation (0.5º) was surveyed for the distributions 
shown in their study.  In 2004 there were relatively few S-band 
dual-polarimetric weather radars, but with a large network of dual-
polarimetric WSR-88Ds now at the community’s disposal, a more 
extensive database can be developed. 

Over the course of nine months, WSR-88D data from  
141 chaff cases across the United States were collected.  It is 
important to note that while confident these cases all represent 
chaff, it cannot be known for sure whether all cases are chaff or a 
different target.  In some cases, combustion debris or wildlife can 
have similar appearance to chaff, even in the polarimetric 
estimates.  Additionally, the only confirmation of these targets 
being chaff is from news stories and social media posts by 
National Weather Service offices (e.g., Fig. 2).  Aside from the 
lack of definitive confirmation of chaff, all of the collected cases 
have similar characteristics and structure.  

 

 
FIG 2: Twitter post from NWS San Diego on 28 October 2016 

regarding chaff appearing on their WSR-88D. 
 
Despite the existence of chaff in a radar volume, there are 

often additional targets such as weather, biological scatterers, 
and/or clutter.  Therefore, the chaff returns must be manually 
separated from the non-chaff returns through the use of human 
truthing.  A human-truthing tool was developed to identify cells of 
chaff and non-chaff.  The tool is shown in Fig. 3, and consists of a 
simple click-based interface for the user to mark whether a cell or 
cluster is chaff or non-chaff.  A subject matter expert uses all of 
the available information (i.e., radar variables) to make a decision 
as to the type of target being observed.  After a volume analysis is 
completed, all of the data associated with chaff and non-chaff are 
stored in a database for future processing. 
 Since this method depends on cell clustering, some of the cell 
edges were not included in the original dataset, so a “lasso” tool 
implementation was used with data collected in the latter half of 
the collection period, ensuring all aspects of the chaff clouds were 
included.  In total, 22 cases were used to develop the distributions 
shown in Section 3, comprising over 500,000 data points. 

 
FIG 3: A human-truthing tool for marking chaff and non-chaff was 

developed for this study at MIT Lincoln Laboratory. 
 

3. Methodology 

a.  Calculations of distributions  
 
 Once a substantial amount of chaff data was human-truthed 
and stored, distributions of radar variables could be created.  These 
distributions are a critical input metric for the fuzzy logic method 
utilized in the HCA framework.  The distributions of reflectivity 
factor (Z), differential reflectivity (ZDR), cross-correlation 
coefficient (ρHV), and standard deviations of reflectivity factor 
(SD[Z]) and differential phase (SD[ϕDP]) are shown in Fig. 4.  
 Reflectivity factor displays a relatively low signature with a 
median value of approximately 15 dBZ, while cross-correlation 
coefficient is represented by a nearly symmetric distribution 
centered just below ρHV = 0.6.  The standard deviation of 
reflectivity factor is similar to many other target types with a 
median value just over 2, while the standard deviation of 
differential phase is significantly higher than most target types.  
Since specific differential phase is only calculated for high ρHV 
values, that particular variable is not relevant to chaff and is not 
plotted.  It is important to note that these distributions are for all 
elevations and tilts so as to serve as an input for the current HCA 
implementation.  The distributions, especially ZDR, are different at 
varying elevations.    

Of primary interest is the wide distribution of differential 
reflectivity, with non-trivial percentages of the distribution ranging 
across the entire spectrum.  This is in stark contrast to multiple 
previous reports (Zrnić and Ryzhkov 1999; ZR04;  
Melnikov et al. 2008), specifically ZR04.  As stated earlier in the 
paper, this is due to the sheer volume of data used in this study 
relative to ZR04, but additional discussion of this observation is 
provided in Section 5.  It is important to note that these 
distributions were calculated after the Level-II data were passed 
through a Radar Product Generator (RPG) dual-polarimetric pre-
processor simulator, essentially meaning that Level-III data were 
used to create the distribution plots.  While the distributions are 
slightly different using Level-II data, the trends are similar.  This 
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method was chosen due to the fact that the current version of the 
HCA operates on data that have been processed through the RPG.  
Note also that the ZDR data have range bounds of +/- 7.9 dB.  An 
extended range ZDR should be available on the WSR-88D in the 
coming years and it is expected that could possibly enhance the 
tails of the distribution.  

 

 
FIG 4: Distributions of Z, ZDR, ρHV, and standard deviation 

of Z and ϕDP in chaff cases across the United States. 
 

b.  Optimization of membership functions and weights 
 
The membership functions within the HCA framework are 

simplified distributions that take the form of a non-symmetric 
trapezoid.  While the distributions shown in Fig. 4 cover a 
multitude of cases and are therefore expected to be accurate 
representations of the variable distributions, they must be 
simplified in a sense that will create a proper chaff class for the 
HCA.  Trapezoids that approximate the distributions are fed into a 
genetic algorithm optimization framework (Holland 1992;  
Eiben and Smith 2003) as initial conditions, along with initial 
weights of 0.5 for each variable.  Genetic algorithms represent a 
set of metaheuristics that step through “generations” of possible 
solutions made up of bit-sequence combinations of previous 
generations.  Random mutations are applied to avoid local minima 
in the fitness function, allowing the procedure to operate in a 
similar nature to the theory of evolution.  The four corners of each 
trapezoid (X1, X2, X3, and X4) that relate to 0, 1, 1, and 0 
probabilities (respectively) are each allowed to deviate slightly 
from their initializations while the weights are allowed to vary 
from 0 to 1.  Data resolutions are different for each variable, but 
range from whole integers to two decimal places. 

The number of degrees of freedom in the optimization is 
therefore 30 (not counting any thresholds, covered in Section 3c), 
with 24 of the degrees relating to trapezoid position and the 
remaining 6 relating to weights.  The weights, W, are then 

convolved with the membership function, P, and a quality index 
vector, Q, to form an aggregation value, A: 
 

 
 
This summation passes through all six variables (the j index) to 
determine a weighted aggregate score for a given target (the  
i index).  The target with the highest aggregation score is the HCA 
output for a given range gate. 
 The genetic algorithm utilizes the 30 degrees of freedom as 
inputs and operates on a series of chaff and non-chaff datasets.  
The goal is to maximize the number of chaff gates that are 
reported in the chaff class and minimize the number of non-chaff 
gates that have their original HCA classification changed.  This 
technique therefore attempts to minimize the effect on existing 
HCA classes while developing a new chaff class.  The fitness 
function that has yielded the most positive results is a critical 
success index represented by: 
 

       
 
where SC is the chaff score (a “hit”) and PC is the chaff penalty  
(a “miss”).  The algorithm attempts to minimize f by changing the 
trapezoid positions and weights.    
 
c.  Data thresholding  
 
 As described in Park et al. (2009), the accuracy of the HCA 
can be improved by suppressing certain classes with thresholds.  
These thresholds are purely empirical, meaning that they can be 
built in to the optimization algorithm to suppress improper 
classifications of chaff in situations where it is unlikely to be 
observed.  Although multiple thresholds have been experimented 
with, the primary threshold of interest for chaff has proven to be 
spectrum width.  As shown in Fig. 5, the observed spectrum width 
in chaff is generally below 4 m s-1 and usually below  
2 m s-1.  As part of the optimization utilized in this paper, a value 
of 2.9 m s-1 was used as a threshold, meaning any gates with a 
spectrum width higher than 2.9 m s-1 are not allowed to be 
classified as chaff.  This particular threshold reduces chaff false 
alarms in ground clutter and anomalous propagation where 
spectrum widths are generally higher.  The 2.9 m s-1 value was 
determined via optimization as an extra degree of freedom, and is 
subject to changes in the future.  Additionally, this number may 
change as more cases are included in the optimization.  Future 
work may involve the use of a texture parameter in the spectrum 
width field.  
 The use of spectrum width as a data thresholding parameter is 
based on the assumption that chaff tends to exist in low-turbulence 
environments.  In other words, chaff is generally not found in 
highly sheared environments.  These types of environments would 
lead to a dramatic widening of the spectrum, and they do 

(1) 

(2) 
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occasionally occur.  However, the assumption regarding low 
spectrum width generally performs well, especially when the 
image processing techniques discussed in the next subsection are 
applied to fill in any gaps where spectrum width is either elevated 
or not available. 

FIG 5: Distribution of spectrum width (SW) in 22 chaff cases across the 
United States.  Units are m s-1 along the abscissa and normalized probability 

along the ordinate. 

d.  Image processing  
 
 While the HCA output provides users with a general idea of 
which hydrometeors are being detected, it can appear rather noisy 
at times and is not necessarily ideal if available to flight controllers 
in this form.  These users often prefer to see a single product that 

can differentiate between two target types (e.g., weather and 
clutter/chaff).  In fact, the preferred practice for FAA is to distill 
the HCA (and other dual-polarimetric information) into separate 
products that interpret the situation in terms useful to them (such 
as icing or hail).  Other algorithms exist to differentiate between 
weather and non-weather (e.g., Krause 2016), but chaff is an 
important distinction for the FAA.  Chaff ingest into aircraft 
engines can result in more expenses related to maintenance and 
cleaning and it is therefore preferred to avoid flying into chaff 
clouds.  For this reason, a binary product that determines whether 
a target is chaff or not chaff may potentially be ideal for the FAA 
and flight controllers. 
 Since the raw HCA output can contain noisy data and it is 
desired to provide binary chaff information in a cellular sense (i.e., 
an entire chaff “cloud” should be marked as chaff rather than only 
parts of it), some form of image processing must be applied to the 
HCA chaff class.  It is also critical to FAA needs to avoid labeling 
weather as chaff, so the image processing aides in mitigating this.  
The following steps are taken during the image processing phase 
of the algorithm:  

 
1. Calculate HCA output 
2. Separate chaff and non-chaff 
3. Median filter each target type (chaff and non-chaff) 
4. Dilate and close each target type 
5. Filter out the non-chaff classes from the chaff class 
6. Final dilation and closing 

 

FIG 6: Illustration of four of the six image processing steps for a mixed chaff/weather case at the KBYX WSR-88D site on 23 February, 2016. 
Step 1 (top left) is the HCA output; Step 2 (top right) is the separation of chaff from non-chaff; Step 4 (bottom left) is the result of dilation/closing 

of the chaff class; Step 6 (bottom right) is the final chaff product after accounting for the weather targets. 
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The core aspects of this technique revolve around binary 
morphological operators such as median filtering, dilation, and 
closing.  The median filtering cleans up initial noise in areas of 
small detections, while the dilation and closing fill in cells that 
weren’t fully detected as chaff.  The filters can be rather large 
spatially depending on the type of target that is detected and the 
resulting noise levels, but these specifics are still being developed. 

While the chaff class is filtered in this way, the non-chaff 
targets are also median filtered, dilated, and closed.  Non-chaff 
targets are considered to be any liquid targets below the melting 
layer other than the HCA big drops classification and any ice-
phase targets that meet appropriate SD(ϕDP) and ϕDP requirements.  
This result is convolved with the filtered chaff targets to remove 
any possibility of weather targets being labeled as chaff.  Due to 
the dilation and closing of the non-weather target type, a small 
buffer is created around the weather as a conservative measure.  A 
final dilation and closing is performed on the chaff class, taking 
into account the filtered weather targets.  An illustration of steps 1, 
2, 4, and the final result (step 6) is shown in Fig. 6. 
 
e.  Machine learning 

 
While exploring the topic of chaff detection and determining 

the appropriate membership functions and weights for a chaff 
class in the existing HCA, it was found that a number of errors 
arose in cases of sea clutter.  After closer analysis, it was 
discovered that the radar variable distributions for chaff and sea 
clutter are relatively similar to each other.  Specifically, ρHV values 
are low due to the lack of homogeneity and ϕDP values are high 
and variable, leading to a high texture parameter.  While this is an 
ongoing problem being worked on, it is important to note that 
initial attempts to correct this issue with machine learning have 
been successful.  Although beyond the scope of this paper, a short 
description of this final step is warranted. 

The resulting chaff “clusters” (a cell of chaff, similar to 
thunderstorm cell detection) represent regional statistics that 
provide distributions of variables within an entire cell rather than 
at one range gate (local statistics).  These characteristics show 
some differences between sea clutter and chaff and can be 
“taught” to a machine learning algorithm.  A support vector 
machine (SVM) approach (Bishop 2007) is currently being 
adapted to look into this as a possible solution.  An SVM is a 
supervised learning technique that is fed by large, truthed training 
datasets.  By finding patterns in data from the training datasets, it 
can predict the appropriate classification of new datasets.  As long 
as a large enough dataset is used for training, no re-training or 
unsupervised learning is necessary during processing of new data.  
Initial results have been promising but need additional work in the 
near future. 

 

4. Results 

Three chaff cases are presented in this section as representative 
examples for the chaff detector’s performance.  Each case includes 
a six-panel plot of Z, ZDR, ρHV, ϕDP, the HCA output with the chaff 

class, and the final CDA output.  The HCA output also includes a 
class for sea clutter (see section 3e), although this is a work in 
progress.  None of the cases shown contain significant sea clutter 
that would be detected by the algorithm.  Additionally, a class 
marked as “NL” (non-living) demarcates areas where a chaff-like 
target was detected but neither chaff or sea clutter could be 
determined as a highly likely target.  More details on this can be 
found in the discussion section.  While the chosen cases are only a 
subset of the cases collected, they show the general performance 
capabilities of the algorithm.  None of the cases presented were 
confirmed by social media posts from the NWS or other sources, 
but they follow the same characteristics as cases that were cited by 
the NWS. 

 
a.  Case 1: 26 January, 2016 – KLTX (Wilmington, NC) 

 
 A series of chaff releases at different heights and times 
resulted in an east-west oriented chaff cloud over the ocean, a 
chaff cloud over extreme southeastern North Carolina, and a 
number of small areas of chaff in east-west orientations extending 
in a line from north to south.  During the release, a line of 
convective showers formed in a north-south orientation near the 
middle of the large chaff cloud off the coast.  A sample of Z, ZDR, 
ρHV, ϕDP, HCA, and CDA outputs is shown in Fig. 7 for the base 
elevation scan. 

The chaff is particularly simple to see in the ϕDP field in this 
case due to the lack of significant ground clutter.  The areas of 
chaff are generally marked by regions of high ϕDP, which is in 
stark contrast to the areas of relatively low and constant ϕDP in 
weather.  ϕDP alone can be a difficult tool to use for determining 
whether a target is chaff because of different calibrations at 
different radar sites as well as the existence of higher ϕDP values in 
heavy rain, hail, etc.  For these reasons, the texture parameter of 
ϕDP, or the standard deviation of ϕDP, is a heavily weighted tool for 
distinguishing between chaff and other targets.  This case shows 
the high SD(ϕDP) in the chaff clouds consistently. 

The HCA returns a chaff classification for the majority of the 
areas of chaff, although some areas of the large east-west oriented 
band are marked by ground clutter and big drops.  The image 
processing that results in the final CDA output fills in these gaps 
to produce single-cell chaff cloud representations.  Also of note in 
this case is the lack of weather censoring as the convective line 
crosses the chaff cloud over the ocean.  This is because the radar 
resolution volumes are filled predominantly with chaff, leading to 
the correct designation being assumed to be chaff.  This is a 
common problem in mixed chaff and weather cases, but when the 
returns are dominated by weather, the range gate is protected from 
being labeled as chaff. 

ZDR is distributed non-uniformly at the base elevation scan, 
with strongly positive values to the east (higher elevations) and 
strongly negative values to the west (closer to the radar) in the 
large east-west oriented cell.  The main chaff cell over land 
contains areas of high and low ZDR, while some of the smaller cells 
consist mostly of positive ZDR values and some consist of 
predominantly negative ZDR values.  This case generally shows
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FIG 7: From left to right, top to bottom: Z, ZDR, ρHV, ϕDP, HCA output, and CDA output from a mixed chaff and weather case on 26 January 2016 at 

2158 UTC at the 0.5º elevation angle from KLTX.  The CDA properly identifies the two largest chaff cells but does not detect all of the smaller 
chaff cells to the south. 

 

  

FIG 8: From left to right, top to bottom: Z, ZDR, ρHV, ϕDP, HCA output, and CDA output from a mixed chaff and clutter case on 22 August 2016 at 
2042 UTC at the 0.5º elevation angle from KMKX.  The CDA properly identifies the two chaff cells and does not detect any chaff in the clutter 

near the radar.
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negative ZDR at lower elevations and positive ZDR at higher 
elevations, but some areas do not follow the overall trend.  Some 
cells seem to be influenced by nearby weather or are at different 
fallout stages, possibly indicating that not enough time has passed 
for the chaff to become vertically oriented. 

 
b.  Case 2: 22 August, 2016 – KMKX (Milwaukee, WI )
   
 Two separate but closely spaced chaff releases occurred to the 
northeast of Milwaukee, WI.  Mid-level winds from the southeast 
caused the chaff to fall out towards central WI, resulting in a  
150-km band of chaff to appear on the 0.5º tilt of KMKX at 
2042 UTC (Fig. 8).  This case demonstrates the difficulty of using 
just ϕDP, for example, to differentiate chaff from other targets.  
Despite a high standard deviation, the values range substantially 
from nearly 0º to 360º, indicating not only a higher standard 
deviation, but the existence of phase wrapping that can be difficult 
to quantify in noisy fields. 

The chaff clouds, oriented roughly north-south, overlap the 
outer edges of the clutter.  While many areas of the clutter exhibit 
less texture in ϕDP, some areas look similar to the chaff.  In this 
case, the other parameters are combined to differentiate the chaff 
from the non-chaff targets.  Although not shown, the spectrum 
width in the clutter is generally elevated relative to the chaff, 
causing fewer classifications of chaff in the HCA.  The image 
processing smooths over these small detections, eliminating them 
from the final CDA. 

Also of note is the existence of big drop detections in chaff 
clouds, indicating similarities between the membership functions 
of big drops and chaff.  One possible solution to this is to limit the 
big drop class to maximum ϕDP texture parameters to avoid big 
drops from appearing from chaff.  However, this could potentially 
cause a cascading effect in the HCA that would need to be 
properly validated.    

It is worth noting that big drops consist of primarily positive 
ZDR values due to their oblate spheroidal shape.  The overlap 
between the big drop and chaff classes is therefore an interesting 
observation, but given the wide ZDR range of chaff, one would 
expect that big drop classifications may appear only in the areas of 
strongly positive ZDR, which is supported in this case.  ZDR is 
generally positive in this case, even at the base elevation scan.  
This was towards the tail end of the chaff cloud fallout, a period 
that tends to display positive ZDR values even at lower elevations.  
These observations draw into question the discussion in Section 5 
regarding the fair-weather electric field, but may also point to 
additional mechanisms that are yet to be explored for chaff 
orientation, particularly in the lower troposphere. 

 
c.  Case 3: 1 November, 2016 – KSFX (Pocatello, ID)  

 
The final example is a mixed chaff, weather, and clutter case 

from a chaff release west of Pocatello, ID.  Northeasterly winds 
resulted in the appearance of two chaff clouds approximately 150-
200 km southwest of the radar site on the 0.5º tilt.  These clouds 
can be verified (as best able) by tracking their occurrences at 

higher elevations over time.  Both exhibit similar characteristics to 
the previous two cases, with generally high ϕDP and a relatively 
high texture parameter for ϕDP.  However, the chaff cloud to the 
east appears to be mixing with rain or snow showers and is 
therefore influenced by smaller overall ϕDP values and higher ρHV.  
For this reason, the HCA classifies a series of “unknown” gates 
since no clear distinction can be made among any of the classes.  
After the image processing algorithm is completed, these cells are 
removed and only the western-most chaff cloud is detected in the 
CDA. 

The HCA output in the western cloud is almost uniformly 
chaff, lacking the big drop classifications from the previous two 
cases.  Different types of chaff (wavelengths, materials, etc.), 
varying calibrations between radars, and different atmospheric 
conditions may vastly alter the original determination of target 
types in the HCA.  However, as shown across the three cases, the 
image processing results in a consistent end product. 

ZDR in this case is mostly negative, although the outer edges of 
the cell display positive ZDR values.  ZDR values at higher 
elevations were generally positive (not shown).  This case suggests 
that some aspect of size sorting may be ongoing, although it is not 
clear as to what the exact sorting mechanism could be, or its scale. 

 
5. Discussion 

 
a.  CDA performance and ongoing machine learning work 
 
 Performance of the HCA chaff classification and the CDA 
output have generally met expectations, although there are certain 
cases that need additional work.  First, some cases in clutter can 
generate clusters of chaff classifications that are large enough that 
the image processing cannot remove them.  This issue is 
exacerbated by the fact that range gate cells are elongated close to 
the radar compared to farther distances where they are more 
symmetric.  Since clutter is most prominent in these closer cells, 
this can cause false positives.  This is a possible area for machine 
learning to aide in removing these detections. 

Second, as mentioned previously, sea clutter has a significant 
overlap of membership functions with chaff, specifically in the 
critical areas of ϕDP texture and low spectrum width.  For this 
reason, the regional statistics afforded by utilizing cell clustering 
and a machine learning approach can be helpful for determining 
whether cells are sea clutter or chaff.  The biggest issue with this 
technique is that occasionally, chaff cells can be “connected” to 
sea clutter cells, making the cells cluster together as one.  The 
machine learning algorithm then must make a decision as to which 
classification to mark the cell.  This could potentially be mitigated 
through a linear time-invariant filter that slides backwards in time 
to keep continuity between cells.  An approach similar to this 
could also prevent small chaff cells from oscillating between 
detections and non-detections. 

Finally, the use of an overarching class such as the “NL” 
designation in the previous examples can help label targets that are 
not chaff or sea clutter but happen to fall into the larger bin with 
similar characteristics.  An example of such a target could be 
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smoke (specifically ash or combustion debris) associated with a 
forest fire; these targets take on vastly different characteristics 
based on what is being burned, but can often fall into similar 
categories as chaff and sea clutter (Melnikov et al. 2008).  The 
machine learning approach therefore takes anything classified as 
non-living and puts it in a bin of chaff, sea clutter, or NL.  This 
information could be fed back into the HCA results for greater 
accuracy.  This technique results in small NL detections in the 
HCA in areas of clutter, but in practice, these results have not 
deviated significantly in variability compared with the current 
HCA. 

 
b.  Negative ZDR in chaff  

 While investigating distributions of radar variables in chaff, it 
was discovered that a non-trivial number of chaff clouds contain 
strong negative ZDR signals, a new finding from that reported in 
ZR04.  As shown in Fig. 4, the distribution of ZDR is certainly not 
Gaussian (i.e., there is a skew towards positive ZDR values), but 
there is a relatively strong signal on the negative end of the ZDR 
scale that was not seen in ZR04 or other reports.  Interestingly, a 
dependence on height has been seen in the data, leading to the 
desire for further investigation. 
 An example of the distribution of ZDR with height for a case at 
the Key West, FL KBYX WSR-88D site on 17 June 2016 is 
shown in Fig. 10.  A positive slope of approximately 0.29 km dB-1 
is evident, with generally negative ZDR below 7 km and generally 
positive ZDR above.  Although this is only one case spread over the 
span of 3 hours, this signature is seen in virtually all of the chaff 

cases analyzed: negative ZDR at the bottom of the chaff cloud 
transitioning to positive ZDR at the top of the chaff cloud.  The 
exact elevations above ground level deviate somewhat from case 
to case, especially at different elevations above sea level, but the 
trend is clear across hundreds of cases. 
 Two different hypotheses come to mind as to why these 
observations may be occurring.  The most likely scenario is that 
the fair-weather electric field (Chalmers 1967), which is stronger 
at lower elevations, is orienting the chaff particles vertically at 
lower heights.  Initial calculations comparing results from 
Weinheimer and Few (1987) with fall speed estimates taken from 
Jiusto and Eadie (1963) indicate that the order of magnitude of the 
fair-weather electric field combined with the aspect ratio of chaff 
and its effective fall speed could result in vertically dominated 
orientations, especially at lower elevations.  Future work using 
physical chaff and a controlled electric field could validate this 
theory and is part of upcoming plans. 
 Additionally, chaff has been known to clump (Arnott  
et al. 2004; ZR04), resulting in the need for anti-clumping agents 
when chaff is released.  The authors can verify from 
experimentation with physical chaff that clumping is a common 
occurrence.  It is possible that clumped chaff falls in a different 
manner than non-clumped chaff, resulting in a different ZDR 
signature.  Individual chaff strands generally fall in a horizontal 
fashion when a strong, vertically oriented electric field is not 
applied, but it is unknown how clumping would affect these ratios. 
 It would make sense that clumped chaff would be denser and 
produce less aerodynamic torque and therefore fall out faster than 

FIG 9: From left to right, top to bottom: Z, ZDR, ρHV, ϕDP, HCA output, and CDA output from a mixed chaff, weather, and clutter case 
on 1 November 2016 at 1955 UTC at the 0.5º elevation angle from KSFX.  The CDA properly identifies the chaff cell to the southwest 

of the radar and does not detect any chaff in the areas of weather or the clutter near the radar. 
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non-clumped chaff.  If these clumps were to orient in a more 
vertical fashion, negative ZDR at lower elevations could be 
realized.  It is suspected that the final ZDR signatures are 
influenced by both clumping and the electric field.  An important 
area for upcoming work will be analyzing ZDR distributions in 
cases near convective activity where the electric field is stronger 
(and reversed) to see if there is an appreciable difference 
compared with fair-weather cases. 
 

 
 FIG 10: Differential reflectivity vs. height for a three-hour span during a chaff 
case at KBYX on 17 June 2016.  Note the dependence on height, with negative 
ZDR more likely at lower elevations.  Colors indicate relative concentration of 

values, with hotter (yellow) colors showing higher concentrations. 
  
6. Conclusions and Upcoming Work 

 
This paper has presented preliminary findings regarding the 

performance of a fuzzy logic-based chaff detection algorithm, or 
CDA.  The CDA consists of an additional classification category 
added to the existing WSR-88D HCA, combined with an image 
processing algorithm that produces a binary yes/no chaff product 
intended as information for FAA flight controllers and other users.  
It has been found that chaff has similar distributions of radar 
variables to sea clutter, therefore necessitating further examination 
of machine learning techniques that utilize regional statistics to 
separate chaff echoes from sea clutter echoes.  These initial results 
indicate that the use of a “non-living” sub-class in the HCA that 
can be separated into chaff and sea clutter returns has potential 
applications in future WSR-88D research and operations.  
Additionally, repeatable observations of negative ZDR in chaff 
clouds contrast with previously published reports, resulting in the 
desire to further investigate the cause and commonality of these 
occurrences. 

Upcoming work includes fine-tuning of the HCA membership 
functions and weights with larger datasets using the previously 
developed genetic algorithm method.  This tuning should 

particularly take into account sea clutter targets, which were not 
considered in this initial implementation.  In addition, larger 
datasets for the SVM training are required, as are more accurate 
regional statistical measures that will improve performance of the 
machine learning algorithm.  After these steps are complete, 
implementation in the WSR-88D RPG will allow for large-scale 
analysis of performance.  Additional work regarding the 
observations of negative ZDR in chaff is also expected in order to 
better understand the strengths and weaknesses of the algorithm.  
Considerations for an expected expanded ZDR range will 
eventually also be addressed.  
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