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1 INTRODUCTION

This document discusses the theory and algorithmic con-
siderations for the simulation of mobile environmental
and its extensions to non—vehicular data. Furthermore,
it broadens the discussion to data analytical methods en-
abled by the simulated data and applies these methods
to real data collected from a fleet of trucks.

Some of the inspiration for ths project comes from the
Mobile Platform for Environmental Data (MoPED) system
[Heppner et al., 2016], a vehicle-based mobile platform
environmental observation network operating in the US.
Currently a commercial fleet of trucks, ~600 at last count,
with sensors and communications devices, provides this
environmental data to the MoPED system. These vehi-
cles travel interstate, state, local and metropolitan routes,
thus are moderately dense in space and time. A denser
pattern of data acquisition would be attained if several
thousand more trucks were to augment this fleet. The
MoPED system processes and performs validation on
data received from the fleet and delivers it in real time
to the National Weather Service’s Meteorological Assim-
ilation Data Ingest System (MADIS). Sample environ-
mental observations include air temperature, road tem-
perature, atmospheric pressure, dewpoint, rain intensity,
ozone and light level, typically taken at 10s intervals.

In anticipation of a vastly greater fleet, 10,000 vehi-
cles or more, this study focuses on simulation of ambi-
ent temperature and atmospheric pressure along truck
routes. For example, such data are produced by within—
vehicle original equipment manufacturer (OEM) sensors
that conform to the Society of Automotive Engineers’
J1939 standard for vehicle networking, the Controller
Area Network (CAN) bus, also called J—data in this paper.
One way to prepare for this increased data rate and the
inherent uncertainties in the data sets is by simulation.
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The simulator will not be restricted to generation of only
temperature and pressure, thus extending its functionality
to other mobile weather sensors such as smartphones.

Thus this simulator creates a fleet of anywhere be-
tween 1000-10,000 vehicles that start and finish at
random times and travel at randomly—varying speeds
along a US highway network extracted from a geospa-
tial database, with tables designed by one of the au-
thors. Instrument packages on these virtual platforms
sample surface temperatures and pressures from an en-
vironmental field produced by the National Centers for
Environmental Prediction (NCEP) High-Resolution Rapid
Refresh (HRRR) model, that is real-time, hourly with 3-
km resolution covering the continental US. Prior analysis
of MoPED data [Chang and Pietras, 2015] shows that
sensors typically have noise characteristics that lead to
drop-outs, drift and physically unrealizable values. Ac-
cordingly, this simulation produces temperature and pres-
sure values, obtained from HRRR, that are corrupted
with these kinds of noise, Figure 3. Lastly, the simula-
tor collects weather data from the National Weather Ser-
vices Automated Surface Observation System (ASOS)
for comparison, validation, and analytical experiments.

The simulator permits production of a mobile environ-
mental data stream (surface temperature and pressure to
start with) enabling studies as below:

1. Data analytics, including comparing noisy truck data
with ASOS data for calibration coincident temporally,
and in spatial proximity, around 10-km in this paper.

2. Inter—calibration between truck sensors when they
are near-coincident spatially.

3. Detection of spatial surface weather structures such
as dry lines; for example, with the addition of a rela-
tive humidity sensor to the instrument package.

4. The data management infrastructure for mobile en-
vironmental data, e.g., geospatial databases, scal-



ing with number of vehicles and data structures to
keep track of the calibration state of mobile sensors.

5. Expansion of the abovementioned to include other
mobile sensors, on, say, smartphones.

2 SIMULATION DETAILS

The simulator has the following high—level steps:

1. Generate tour for a vehicle. This process is repeated
for as many vehicles as required.

2. Initialize fixed weather station locations using loca-
tions ASOS stations. Temperatures and pressures
from ASOS data are treated as “true values,” to be
statistically compared with values obtained via the
instrumentation on moving vehicles.

3. Use HRRR forecast data to generate readings from
vehicles and add noise to them to simulate instru-
ment characteristics. HRR data, highway location
information and ASOS data are on the same grid.

4. Environmental data gathered from each vehicle are
written to a database for further data analytics.

items enumerated above are explained in more detalil
in what follows.

2.1 Generate vehicle tours

Details are itemized below and pseudo—code follows.

e Open a preexisting table in the PostGIS database
(DB) having a list of highways, cataloged by ID and
total length. LCC refers tothe standard Lambert
Conformal Conic, [Grafarend and Krumm, 2006].

Hwy ID | Length km | LCC proj geom
HID IHNuUm Iccgeom

e For each tour assign a vehicle with:

— Avelocity € [65 110] kmh and generate a ran-
dom start time between 5am and 6am. The
velocity shfits +5 kmh with every At, 10 sec-
onds. Make sure that velocity is always €
[30 130] kmh.

— Two standard deviations (o), one for tempera-
ture and the other for pressure. The tempera-
ture and pressure are obtained from a known
environmental field — see section 2.3 - and
these are identified as the mean p. Using ap-
propriate (u, o) several different temperature
and pressure distributions may be generated,
i.e., uniform, Gaussian, truncated Gaussian,
Gaussian mixture and Cauchy.

e Randomly select highway ID, HID, from the set of

HIDs. If the vehicle finishes traversing the highway
before the limit time (10pm) is reached, increment
the time value € [30 60] min and assign a new HID.

e Initialize vehicle start and end points - choose uni-

form random numbers € [0 Iynym] for each loca-
tion. See Figure 1 for details.

e Generate a query to the DB as in the table below.

The table will have as many rows as there are
timesteps in the vehicles tours. Since vehicles re-
turn environmental data every At = 10s, timesteps
will increment by this amount for every step from
start time through end time. The Position (“Pos”)
quantity is in km and “Velo” is the velocity in kmh.

Hwy ID | Truck ID | Time Pos Velo
HID TID t LinPos | Vel

The DB will produce a large table

Hwy ID | Truck ID | Time | East | North
HID TID t x Y

The East and North columns refer to easting
and northing and are the LCC coordinates.

Pseudocode to generate a vehicle tour is as follows

number0fTrucksToGenerate = input ()
Amazon_server.getHighwayData ()

loop (for each truck)

{

assign truck characteristics
initialize truck position and time
start time at bSam

loop (until time reaches 10pm)

{

if (truck != moving and truck =
resting)
{
if (done resting): resting =
false
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Figure 1: A road as a database object that has a length of
IHNum- Start (S) and end (F) points, chosen randomly,
are indicated. The middle line is the straightened version
of the topmost line from F to S. Knowing velocity, and
time increments, distance along the middle (and there-
fore top) line can be calculated, again from finish to start
or vice—versa. The bottom curve shows a more compli-
cated road for which the straightening procedure would
also be used.

else: decrease
rest_time_remaining
3
else if (truck != moving and
truck != resting)

{
randomize location
randomize start and end points
place truck at start location

set new speed between 65 and

110 kmh
truck = moving
}
else if (truck = moving)
{
server.store (tid, hwy_id,
timestamp, linear position
along highway, speed, other

truck characteristics)
truck.update(position)
truck.update (speed)
}
increment time by 10 seconds
}

increment truck_count

2.2 Fixed weather station data - ASOS

In order to get actual temperature and pressure values
(not estimations or predictions), ASOS station stored
data are retrieved.

1. Station ID, station type, observed time, temperature,
and pressure are extracted from the ASOS file and
stored in the DB. Since each Station ID is unique to
a location, x and y coordinates are retrieved.

2. Assign gridded data form for station data where val-
ues are assigned surrouding a station while grid lo-
cations that do not contain a station within a speci-
fied range are left null.

3. When data values at vehicle’s location are found
to contain values, distance between corresponding
station and truck is calculated. If distance is within
the user-specified station influence range, the tem-
perature, pressure, and station ID is stored along
with the vehicle’s data in the DB.

CAN bus and ASOS temperature data are returned in
1°F increments. This quantization should be part of any
data analytical approach to truck and ASOS temperature
(or pressure) comparisons.

2.3 Get environmental data as vehicle
moves through the physical field

The simulation has produced tours that provide a vehi-
cle with a time stamp, velocity and coordinates in LCC.
This folowing uses the truck location (z, y, t) to produce
time—varying temperature and pressure fields. The vehi-
cle samples actual temperature and pressure fields from
NCEPs High—Resolution Rapid Refresh (HRRR) , a real-
time, hourly, 3—km resolution model covering the conti-
nental US. A sample HRRR pressure field is shown in
Figure 2. A brief description of the process follows:

1. Read in HRRR forecast values for pressure and
temperature as GRIdded Binary (GRIB) data.
HRRR uses the LCC projection, and highways
within PostGIS use the same.

2. The HRRR pixel data has a lower spatial and
temporal resolution than the point set of times
and truck locations in (x,y); each pixel has
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Figure 2: HRRR field that is sampled by a vehicle travers-
ing its tour. This data shows the pressures, in Pa, at
ground level at a particular time. The simulator requires
successive images and performs spatial and temporal
interpolation to produce vehicle temperatures and pes-

sures.

a geographic coordinates and a value). The
weather fields are available at the discrete set
{t,t + At,t +2At, ...t + jAL, ... t + NAt},

e.g., with At = 1 hours and N = 24, there
are one hour increments and a twenty—four
hour period.  Truck times belong to the set,
{to,to + Atg, ..., tg + jAtg, ..., tg + KAto},

where At is typically 10s, i.e., time increments in
the weather fields are much larger than in the truck
positions, or, K >> N. Different time resolutions
of the truck and HRRR therefore require temporal
interpolation and the different spatial resolutions
necessitate spatial interpolation. Temporal inter-
polation is linear, spatial interpolation requires
tan inverse weighted distance (IWD) spatial in-
terpolation [Shepard, 1968], [Gordon and Wixom,
1978] is used. This interpolant uses a weighted
average of the values at surrounding data points,
with the weighting a function of the distances,
typically euclidean, to those points. These steps
are performed for each row in the DB until the entire
dataset is traversed.

This produces several tours that are indexed by time, (x,
y), temperature, and pressure.

2.4 Output

Output is sent to a cloud-based PostgreSQL database
organized with the following structure: tid, hwy.id,
time, easting, northing, temperature, pressure,
near_asos_station_id, near_asos_station_temperature,
and near_asos_station_pressure.

Sample graphical output (temperature versus time)
from the simulator is shown in Figure 3. The chart clearly

Normal Distribution

Figure 3: Simulator produced noisy temperature
data compared with nearby ASOS (airport) readings.
The noise in this graph is defined by AM(p =
Interpolated HRRR value at truck location, o = 5)

shows that ASOS data remains constant for periods of
time, and typically changes by one degree increments
whereas the simulated truck temperatures have a varia-
tion about the a mean (obtained from HRRR) that is given
by the standard deviation, o, chosen in the simulation.

3 DATA ANALYTICS

Analysis of actual mobile sensor data by Chao—Hsi
Chang and John Pietras of GST [Chang and Pietras,
2015] indicates that even well behaved sensors produce
outliers. The scatter plot in Figure 4, adapted from
[Chang and Pietras, 2015], shows a clear linear relation-
ship between the temperatures collected from an instru-
ment package installed on the vehicle and from the truck
Controller Area Network (CAN) bus, coloquially referred
to as J-Data. It clearly shows the effects of noise, both
at a low and high levels. For example, the point (20,36)
indicated by the symbol ®, is clearly a large magnitude
outlier. Another aspect of the graph is a quantization ef-
fect, clearly seen in the horizontal stepping of data points
at one degree increments along the y—axis. The simula-
tor thus reproduces key features of the data described
above with Noise models such as the Gaussian, trun-
cated Gaussian, uniform and the Cauchy distributions.
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Figure 4: CAN bus data (J—data) versus WxBox tempera-
ture data. Large outliers are possible as indicated by the
point at (20,36) indicated by the symbol ®

Figure 5 shows temperature measured using the CAN
bus temperature obtained from a vehicle versus ASOS
temperature. Several issues may be seen in the plot.
While there is a generally evident linear relationship be-
tween CAN bus and ASOS temperature, the best fit line
is not obvious. The least squares (LSQ) method may be
used to fit the line. However, the LSQ method has limita-
tions as enumerated below:

1. Animportant assumption is that x values are noise—
free and only y values have noise.

The noise in the y data is drawn identically and in-
dependently from a Gaussian distribution.

Asymptotically, LSQ has a breakdown point of 0%,
i.e., even a single outlier can strongly change the
slope and intercept. Figure 6 shows this dramati-
cally.

Inspection of this data indicates the following:

1. The CAN bus and the ASOS temperature data
are quantized, meaning temperature readings are
returned as [Toan — ¢1/2 Toan + @1/2] and

[Tasos — 42/2 Tasos +a2/2] where q1,¢2
are the quantizing ranges.

Ouitliers are possible along the x—axis and the y—axis
and may be non-Gaussian.
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Figure 5: Fleet 1 CAN bus temperature data versus
ASQOS temperature data (°F). The graph shows temper-
ature data as the vehicle drove within 10 km of ASOS
station KEPH; the least distance was 1.33 km and the
greatest was 4.95 km.

exists only along the y axis and it is Gaussian, something
other than LSQ should be used.

The Least Median of Squares (LMS) method
[Rousseeuw, 1984] is used for preliminary analysis be-
cause it has a 50% breakdown point, i.e., 50% of the data
can have outliers before it will produce arbitrary and aber-
rant values for the estimator, the slope and intercept.The
LMS is not the last word in robust statistical analysis;
the literature [Rousseeuw and Leroy, 1987] is filled with
newer methods [Huber and Ronchetti, 2009] each with its
advantages and disadvantages.

Just as the LSQ may be said to be a generalization
of the average (mean), the LMS may be considered a
generalization of the median. Assuming a straight line
model between data z; and y;, the equation is:

(1)

with: =1,2,... n, i.e., there are n corresponding pairs
of data (z;, y;); a is the slope and b the intercept. Thus the
aim of linear regression is to obtain estimates 6 = {a, b}
of a, b. The residuals, r;, of a straight line fit are:

Yi =ax; +b

Ty =y — (ax; + zA)) (2)

LSQ minimizes the sum of squared residuals, i.e.,

n 1

: 2 _ . 2

min r=min =) 7
6 — 6 N
i=1 =1

@)

Since two key aspects of LSQ are violated, i.e., noise The least median of squares (LMS) estimator is written

5



as

(4)

min med r?
6 K3
An interpretation of LSQ, equation (3), is that it is a mini-
mization of the average of the squared residuals whereas
LMS is the minimization of the median of the squared
residuals. Intuitively the LMS should be robust since the
median is known to be robust while the mean is not.

Algorithms for LMS are discussed in [Rousseeuw,
1984], [Souvaine and Steele, 1987], [Steele and Steiger,
1986] and [Olson, 1997]. The LMS problem is complex
due to the fact that, unlike LMS, the multi-dimensional
optimization surface is not smooth and has multiple min-
ima given asymptotically as Q(N?) [Steele and Steiger,
1986]. Straight line regression involves optimizing over
only two quantities, i.e., 8 = {a,b}, so a brute force
approach is feasible and takes a fraction of a second to
complete. In order to test this algorithm data was used
from Figure 4 of [Rousseeuw, 1991], listed below and
displayed in Figure 6.

1 0.4 1.00
2 09 1.85
3 12 260
4 1.6 3.00
5 1.8 3.85
1’ 5 1

Table 1: Straight line data from Figure 4 of [Rousseeuw,
1991]. The last point, 1/, represents the conversion of
point 1 into an outlier, i.e., (z1/,y1/) = (5, 1).

Figure 6 shows LSQ and LMS fits to the data in Table 1.
Clearly the LMS fit is resistant to outliers whereas the
LSQ fit breaks down with the slope changing by more
than 90°. Similar results are obrained if the point 1’ were
to move, parallel to the y axis rather than the = axis — this
is illustrated in Figures 3 and 6 of Rousseeuw [1991] and
is not reproduced in this document.

The method is now applied to temperature data col-
lected over several days in 2016, 17 June and 20-22
June. This is shown in Figure 7 and consists of a total
of 493 pairs of points (Tcan,Tasos) where Toan is
the temperature in deg. C obtained from the vehicle CAN
bus and T'4sos is the ASOS temperature. The closest
the vehicle was to the ASOS station is 10.62km and the
furthest 14.65km. The data shows clustering with the
majority of the points running diagonally from lower left
to upper right and a second group lying between 24—28
deg. C on the x—axis (UPS temperature) and 28—34 deg.
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Figure 6: LMS versus LSQ. The left graph shows unper-
turbed data taken from the first five data points in Table 1
along with LSQ and LMS fits to these. The right graph
shows a single point, ®, perturbed along the x—axis — de-
noted as 1’ in Table 1. The LMS fit remains close to the
original slope and intercept but the LSQ fit is drastically
changed due to the strong leverage of this new point.

C on the y—axis. These data act to deflect the LSQ fit
away from the main body of data. The LMS fit is not af-
fected by these leverage points. Another way to consider
the fit to the data is to consider a band around the LMS
and LSQ line of +2 deg. C along the y—axis. There are
71 points between this band for the LMS line but only 55
points for the LSQ line.

4 CONCLUSION & EXTENSIONS

This study has two parts. The first part has a discussion
the theory and algorithmic considerations for the simula-
tion of environmental data via a fleet of vehicles. To this
end code was written that simulated the motion of ve-
hicles through an environmental field making measure-
ments, in this case temperature. Recognizing that data
gathering processes may not be perfect, noise is added
to the temperature in order to match actual data received
from mobile sensors. This simulator was used to create
a fleet of 10,000 mobile sensors, emulate their motion
across US highways, gather temperature data at ten sec-
ond intervals, add noise to these, and store these in a
cloud—based database. The time taken to simulate these
10,000 vehicles with mobile sensors on a small laptop
was less than 10 minutes.

Secondly, a start was made toward the analysis of
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Figure 7: LMS and LSQ method applied to tempera-
ture data gathered from ASOS station KPDK (Dekalb—
Peadhtree airport in Atlanta) and the CAN bus of a single
vehicle. The data shows clustering with the majority of
the points running diagonally from left to right and a sec-
ond group lying between 24-28 deg. C on the x—axis
(UPS temperature) and 28—34 deg. C on the y—axis. The
second group of points serves to move the LSQ fit toward
them; the LMS fit is not affected by these leverage points.

noisy data. Recognizing that the data was visibly con-
taminated by large outliers, had quantization artifacts and
therefore was non—Gaussian, it was decided to utilize ro-
bust methods to perform data calibration. Comparative
studies were done between LSQ and LMS. The latter has
a breakdown point of 50%, i.e., half of the data has to be
contaminated with noise before the parameter estimates
(i.e., slope and intercept) become arbitrary and aberrant
whereas for the former it is 0%. Examples were used to
show how LMS was preferable to LSQ.

Where do we go from here? The literature makes it
clear that the LMS is merely the tip of the iceberg in
terms of data analytical possibilities. An example of a ro-
bust, high breakdown point method is the Least Trimmed
Squares (LTS) estimator [Rousseeuw, 1984]. Further-
more, we have not considered robust correlation coeffi-
cients — this would be the first order of business in any se-
quel. Another approach would be to consider each sen-
sor (ASOS, CAN bus) to have its own intrinsic noise, af-
ter which quantization occurs. Ideally the analysis should
build an hierarchical Bayesian model with sensor noise,
quantization and a Bayesian straight-line fitting method
[Preuss and Dose, 2005] all combined together. Finally,
each data point collected by a truck and corresponding
ASOS data may be considered part of a time—series, e.g.,
see Figure 3. Certainly the techniques of time—series

analysis, whether robust or otherwise, would be appro-
priate for such data.
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