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“Investigating the synoptic and mesoscale features in six selected heavy snow events” has
been revised to “Investigating the synoptic and mesoscale features in six selected heavy snow

events — Jet Streak Circulations and Latent, Sensible Heat Fluxes” Ralph Wade Johnson - Author

Manuscript does not identify a “gap” in scientific knowledge to and add new knowledge to

the body of scientific work.

RE: Discussion of analyses that compares or contrast the contribution of latent, sensible
heat fluxes during mainly continental heavy snow events with mainly ocean heavy snow events
is presented for each of the six events studied. Since most of the emphasis has been on the
contribution of oceanic latent, sensible heat fluxes to heavy snow events, this bridges the “gap”

by recognizing that although the roles are different they are equally important whether the

event is mainly over land or ocean (coastal).

Also, this study identifies a possible “gap” in scientific knowledge between scientific
knowledge between heavy rain and heavy snow events. The use of SPC Hourly Mesoscale
Analysis Archive parameters to diagnose the 25-26 December 2010 and 1-2 February 2011
events partially fills this “gap”, in particular 850hPa convergence, 250-850hPa differential

divergence and 250hPa divergence.

The arguments presented in the manuscript should be free of errors in logic and the

conclusions should follow from the original evidence presented.
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snowstorms, it has been shown for all six events that heavy snow is a “manifestation of
complex interactions or contributions of many physical processes that occur on the synoptic

and mesoscales.

For all events, 850hPa temperature, meridional wind, zonal and the 700hPa v-component
of storm variables have been changed to only as variables that interacted or contributed to

heavy snow during each of the six events.

Zonal winds crossing geopotential height contours, as an indication jet streak ageostrophic
circulations has been REMOVED from the manuscript. Jet streak ageostrophic circulations are
represented by SPC Hourly Mesoscale Analysis Archive images of 300hPa isotachs, height and

ageostrophic wind.

The transition from a closed circulation at 900hPa to a trough at 600hPa and subsequent
latent heat release are primary synoptic and mesoscale processes statement(s) have been

removed from the manuscript.

Latent Heat Release for the 25-26 December 2010 and 1-2 February 2011 events has been
explored by SPC Hourly Mesoscale Analysis Archive images of 700-500hPa mean RH and 700-

500hPa layer — average omega.

Previous work and current understanding must to cited and represent correctly.
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ABSTRACT

This investigative study evaluates meteorological phenomena that played roles in

the heavy snowfall during six selected events — four mainly central United States and
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two Southeast, Middle Atlantic, Northeast/New England. The physical and dynamical
processes emphasized for their respective roles include 700hPa vertical motions or
omega (w) 2-0.60 pa s, Cyclogenesis and cyclone tracks, Jet streak-induced
ageostrophic circulation, 850hPa temperature gradients, 850hPa warm air advection
(WAA), latent heat release (LHR), 850hPa cold air advection, 850hPa frontogenesis,
850hPa low level jet (LLJ), 700hPa relative humidity (RH) 280%, 850hPa meridional
wind, 850hPa zonal wind, 700hPa v-component of storm motion, 700hPa heights and

zonal winds, 300hPa heights and zonal winds.

This research compares and analyzes 700hPa omega, pressure at mean sea level,
850hPa temperature along with other variables mentioned above that made
contributions to the event physical and dynamical processes. The focus is on how the
physical and dynamical processes individually or collectively contributed to produce the
heavy snowfall that occurred during these events. This study compares the role of latent
and sensible heat fluxes over ocean and land in cyclone development. In addition, while
development of the heavy snow event represents complex interaction among many
physical processes that occur on the synoptic and mesoscales, ENSO and

teleconnections provide an important framework within which the winter storm evolves.

1. Introduction

The six events included in this investigative study are 30-31 January 1982, 14-
15 December 1987, 19 January 1995, 1-2 February 2011, 13-14 March 1993 and

25-26 December 2010. The events were compared according to the region(s) that



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

they impacted and the physical and/or dynamical processes that were analyzed
and/or documented during periods of heaviest snowfall. The 30-31 January 1982
event was compared with 14-15 December 1987, since they both produced heavy
snowfall over the central United States, in particular from southwest Missouri to
northeast lllinois/southeast Wisconsin/northern Indiana. The 19 January 1995 event
was compared with 1-2 February 2011, since they both produced a similar pattern
of heavy snowfall from southwest Missouri to northeast Missouri/southeast lowa,
central/northeast lllinois to southeast Wisconsin. The 13-14 March 1993 event was
compared with 25-26 December 2010, since they both produced heavy snowfall
over parts of the southeast United States, the Middle Atlantic States, northeast and
New England.

The main focus of this research is to show that heavy snow events, regardless of
development region, are result of a “manifestation of a complex interaction” (Kocin
and Uccellini 2004 Volume I) or contribution(s) of among many synoptic and
mesoscale phenomena. The variables and physical/dynamical processes include
700hPa maximum negative omega, 700hPa RH =80%, pressure at mean sea level,
850hPa temperature (gradients), 850hPa meridional wind, 850hPa zonal wind,
700hPa v-component of storm motion. Emphasis is on how they contributed to
produce latent heat release (LHR), 850hPa frontogenesis, 850hPa warm and cold
advection, cyclogenesis and the event regional distribution of snowfall. Also,
700hPa heights and zonal winds, 300hPa heights and zonal winds are included to
diagnose the contribution of this vertical plane to the snowfall during the selected six

events.
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A goal of this research is to show that latent and sensible heat fluxes at surface
“complex interact” or contribute with the variables, synoptic and mesoscale
processes mentioned above during cyclone development associated with heavy
snow during each of the six events. However, the role of latent and sensible heat
fluxes in cyclone development associated with heavy continental snows is less
notable than one associated with Middle Atlantic and Northeast events. Another
goal is to provide an indication of latent heat release by showing 700hPa relative
humidity and 700hPa omega images during periods of maximum snow

accumulation for each of the six events.

(Kocin and Uccellini 2004 Volume 1) discuss the large-scale circulation patterns,
(variables, synoptic and mesoscale processes) that contribute to episodes of Middle
Atlantic and Northeast heavy snow events. However, the central purpose or focus of
this research analyzes ENSO, teleconnections, variables, synoptic and mesoscale
processes that contribute to episodes of central United States heavy snow events.

This objective is accomplished in the figure presentation section.

2. Data sources and analysis methods
a. Data
NCEP North American Regional Reanalysis (NARR) 3-Hourly Composite
Mean Archives?! were used to download pressure at mean sea level, 700hPa
omega and categorical snow at surface panels representative of dates and hours

when most intense snowfall occurred during selected cases, in particular those 1
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January 1979 through 31 July 2015. NCEP NARR 3-Hourly Composite Mean
Archives were also used to download 700hPa omega (maximum), pressure at
mean sea level, 850hPa temperature, categorical snow at surface, 850hPa
meridional wind, 850hPa zonal wind, 700hPa v-component of storm motion for
selected events listed above. Since it was unavailable from NCEP NARR 3-Hourly,
700hPa RH=80% data was downloaded from NCEP NCAR 6-Hourly composite

mean archives3

Additional NCEP 3-Hourly Composite Mean Archive synoptic and mesoscale
phenomena variables are downloaded for events that impacted more than one
region during their development and maturity. These include the 700hPa heights
and zonal winds and 300hPa heights and zonal winds. For 13-14 March 1993,
event latent, sensible heat fluxes at surface and event pressure at mean sea level

at six hour intervals during most intense cyclogenesis are included.

b. Analysis

Analysis are done for NCEP NARR 3-Hourly Composite Mean 700hPa
maximum negative omega, pressure at mean sea level, 850hPa temperatures,
850hPa meridional and zonal wind, 700hPa v-component of storm motion,
sensible and latent heat fluxes at surface, 700hPa and 300hPa heights, 700hPa
and 300hPa zonal winds to determine how they contributed to cyclogenesis, jet
streak-induced ageostrophic circulation, latent heat release (LHR), 850hPa warm

air and cold air advection, 850hPa temperature gradients, 850hPa frontogenesis,
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850hPa low level jet (LLJ) in the selected events. NCEP NARR 3-Hourly
Composite Mean 900hPa analyses (lower troposphere closed circulation) and
600hPa analyses (middle troposphere trough) have been used to diagnose LHR
during each of the six events. The Storm Prediction Center2 (SPC) uses
850hPa frontogenesis, 850hPa temperature advection and differential vorticity
advection in their analyses. As mentioned above, comparison of the above
parameters as indicators of the physical and dynamical processes has been
done by regions impacted by the heavy snowfall during the winter storms. The
selection of dynamical and physical processes has been in accord with Kocin

and Uccellini Volume Il (2004) analyses of thirty-two selected major snowstorms.

Relevant higher resolution image patterns from the SPC Hourly Mesoscale
Analysis Archive are included to provide emphasis of the contribution of these
parameters to snowfall during the selected events. These are: Group (1) is
700hPa height, wind, temperature, 700-500hPa mean RH (fill). Group (2) is
300hPa isotachs (fill), height and ageostrophic wind and 700-500hPa layer-
average omega (magenta — up). Group (3) is 850hPa Pettersen frontogenesis
(fil), 850hPa height, temperature and wind. Group (4) is 850hPa temperature
advection (fill), 850hPa height, temperature and wind. Group (5) is 850hPa
convergence (red), 250-850hPa differential divergence (fill), 250hPa divergence
(purple). Group (6) is Surface temperature, dewpoint and pressure mean sea
level. Group (7) Near freezing surface wet bulb temperature, sea level pressure
and wind. The SPC Hourly Mesoscale Analysis Archive for these parameters is

available 1800 UTC 1 February 2011, 2100 UTC 1 February 2011, 0000 UTC 2
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February 2011. (According to surface observations, this is the 6-hour increment
period of maximum 1-2 February 2011 event snow accumulation.) Also, the SPC
Hourly Mesoscale Analysis Archive for these parameters is available 0600 UTC
26 December 2010, 0900 UTC 26 December 2010, 1200 UTC 26 December
2010. (According to surface observations, this is the 6-hour increment period of

maximum 25-26 December 2010 event snow accumulation.)

Other parameter images from the SPC Hourly Mesoscale Analysis Winter
Weather Archive that are relevant to the 1-2 February 2011 and 25-26 December
2010 maximum events snow accumulation are 800-750hPa EPVg (shaded) and
Conditional Instability which includes 850hPa frontogenesis (red), 650-500hPa
EPVg (shaded) and Conditional Instability which includes 700hPa frontogenesis
(red) and Critical Thickness — 1000-500hPa (red), 1000-700hPa (green), 1000-
850hPa (blue), 850-700hPa (yellow) and surface temperature 0°C (magenta).
According to surface observations, the 6-hour increment period of maximum 1-2
February 2011 event snow accumulation for 800-750hPa EPVg, 650-500hPa
EPVg and Critical Thickness includes 2100 UTC 1 February 2011. According to
surface observations, the 6-hour increment period of maximum 25-26 December
2010 event snow accumulation 800-750hPa EPVg, 650-500hPa EPVg and

Critical Thickness includes 0800 — 0900 UTC 26 December 2010.

Comparison of parameters, physical and dynamical processes are done by
region(s) in which the selected events occurred. This is shown in Tables 1, 2 and
3 that also include surface, 850hPa and 700-500hPa frontogenesis, [EPVg and

Cl (850-750hPa) (650-500hPa)] used in SPC analyses. Also, NCEP NARR 3-
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Hourly and NCEP NCAR 6-Hourly variables are included in the tables. The tables
depict which variables, physical and dynamical processes that are common, as
well as unique to the events compared and hence unite understanding of the
case studies. Also, this research, including tables, has been done to show
specific contributions for jet streak circulations, including ageostrophic, latent,
sensible heat fluxes (ocean, gulf and continent) and latent heat release that
produced heavy snowfall during each of the selected events. However, a main
goal of this research is not to analyze the variables, physical, dynamical
processes and SPC Hourly Mesoscale Analysis Archive parameters but
emphasize their contributions to the regional distribution of snowfall and areas of
heavy snow in each of the six events. Unfortunately, SPC Hourly Mesoscale
Analysis Archive parameters-24 hour are available 18 October 2005 to present

which only includes the 25-26 December 2010 and 1-2 February 2011 events.

www.esrl.noaa.gov/psd/cgi-bin/narr/plothour.pl

2Wwww.spc.noaa.gov

swww.esrl.noaa.gov/psd/data/composites/hour

3. Synoptic and Mesoscale Analyses — Central United States
a. 30-31 January 1982 Event

i. Overview
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This event was chosen since it was associated with cyclogenesis that
produced notable rains prior to heavy snows over the middle Mississippi valley.
Also, extensive elevated convection was recorded during moderate/heavy
snowfall. The storm regional distribution of snowfall was primarily central United

States, including Great Lakes.

Moore and Blakley (1988) documented that moderate/heavy snowfall
accompanied by lightning and thunder occurred between 0100UTC 31 January
1982 and 1400UTC 31 January 1982 at Lambert Saint Louis International
Airport. According to Moore and Blakley (1988), surface observations for Saint
Louis Lambert Airport 2200-1400UTC 30-31 January 1982 indicated large
pressure fluctuations throughout the period with a periodicity of several hours,
most likely related to thunderstorm activity. Such pressure fluctuations may also
indicate mesoscale gravity waves during this event (Schneider 1990a). The
banded structure of moderate-to-heavy snowfall from east-central Missouri
through northeast-to-east lllinois into north-central Indiana were accompanied by
700hPa w<-1.2 pa s over east-central Missouri and west central lllinois
(indicated Figure 1C) and possible mesoscale gravity wave activity during this
event. The presence of these vertical motions, heavy snow along relatively
narrow band north-northwest of inverted trough, and a marked warm front
extending across south-central Missouri-central and southern lllinois-central and
southern Indiana 0000-1200UTC 31 January 1982 indicate that thunder-snow

was elevated. Thunder-snow ~400 km north of surface cyclone over east-central
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Arkansas at 0600UTC 31 January 1982 (Moore and Blakely 1988) is indication

of the presence of elevated convection during this event (Market et al. 2002).

1. Analyses of variables and synoptic, mesoscale processes

Figure 2 Images [A], [B], [D] show how 850hPa temperature, 850hPa
meridional wind and 850hPa zonal wind interacted during this event. Figure 2
Image [C] indicates how the 700hPa v-component of storm motion contributed
along with [A], [B] and [D] to produce the regional distribution of snowfall shown

in Figure 1 Image D.

Figure 2 Images [B], [C] indicate an advection role of the 850hPa low level
jet (LLJ) during this event. Figure 2 [A], [B], [C] indicate how the 850hPa LLJ
contributed along with 850hPa temperature (gradients) — [A] and v-component of
storm motion — [C] to produce heavy snowfall during this event. Figure 1 Images

B and C provide an indication of latent heat release during this event.

The complex interactions or contributions include 700hPa trough—ridge
systems [Figure 18 Image A] provide divergence and ascent (700hPa maximum
negative omega) [Figure 1 Image C] for cyclogenesis [shown Figure 1 Image A].
Jet streak circulations embedded within this trough-ridge system [indicated
Figure 18 Images A, B, C, D] help focus ascent patterns [Figure 1 Image C],
transport potential vorticity (Kocin and Uccellini 2004 Volume | — their Figure
7.1c) toward the developing cyclonic circulation (Figure 1 Image A), enhance
low-level temperature gradients, for example 850hPa [shown Figure 2 Images A

and B] and middle level moisture transports [shown Figure 1 Image B and Figure
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2 Image C] that are required heavy snowfall (Kocin and Uccellini 2004 Volume

).

Since 700hPa and 300hPa zonal winds (Figure 18 Images B and D) are
available, convergence and divergence, vorticity advection and the presence of
jet streak circulation can be diagnosed from 700hPa—300hPa vertical plane

geopotential height fields during this event (Figure 18 Images A and C).

Figure 23 [Images A, B] show the role of sensible and latent heat fluxes in
development of cyclones associated with heavy continental snow events is
somewhat less defined than those associated with middle Atlantic and northeast
events. However, notable contributions of latent and sensible fluxes can be seen
in vicinity of the cyclone [Image C] associated with this event. Also, Image [C]

indicates role of the “cold” anticyclone over western Minnesota during this event.

b. 14-15 December 1987 Event

l. Overview

This event was chosen because of the observed and documented presence
of mesoscale gravity wave interaction during the event. Again, elevated
convection was recorded during moderate/heavy snowfall. The storm regional
distribution of snowfall was primarily central United States, including Great

Lakes.
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There is considerable interest for including this previously studied event
here. First, Moore and Lambert (1993) found EPV, CSlI, convective instability
and elevated convection were important processes during 14-15 December
1987 winter storm. Second, Pokerandt et al. (1996) document that within this
event, a series of mesoscale gravity waves that formed and lasted for over 10
hours within a rapidly developing mid-latitude cyclone. According to Schneider
1990a, the large-amplitude mesoscale wave disturbances had a maximum
surface pressure perturbation of ~10hPa and produced severe winter weather
including wind gusts to 30 m s, cloud to ground lightning and much localized

periods of heavy snow.

Near the time when observed mesoscale waves had large amplitude, many
mesoscale surface pressure perturbations were evident in the Pokerandt el al.
(1996) model. When observed waves had just entered west-central Illinois
(0600-0800UTC 15 December 1987), their model had a wave from southwest
WI into northeast IL, another with amplitude ~4hPa from east-central IA into
west-central IL, several others from southern Ml southwest to southern MO. So,
0300 — 0900UTC 15 December1987 NCEP/NARR w=-0.90 pa st (shown Figure
3C) fields have observational relationship to mesoscale gravity waves at mature

stage of this event.

I. Analyses of variables and synoptic, mesoscale processes

Figure 4 Images [A], [B], [D] show how 850hPa temperature, 850hPa

meridional wind and 850hPa zonal interacted during this event. Image [C]
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shows how the 700hPa v-component of storm motion contributed along with [A],
[B] and [D] to produce the regional distribution of snowfall shown in Figure 3
Image D. Figure 3 Images B and C provide an indication of latent heat release

during this event.

Figure 4 Images [B], [C] an advection role of the 850hPa low level jet (LLJ)
during this event. Images [A], [B], [C] show how the 850hPa LLJ “complexly
interacted” or contributed along with 850hPa temperature (gradients) — [A] and

v-component of storm motion — [C] to produce heavy snowfall during this event.

The complex interactions or contributions include 700hPa trough-ridge
systems [Figure 19 Image A] that provide divergence ascent (700hPa maximum
negative omega) [Figure 3 Image C] for cyclogenesis [indicated Figure 3 Image
A]. Jet streak circulations embedded within this trough-ridge system [indicated
Figure 19 Images A, B, C, D] help focus ascent patterns [Figure 3 Image C],
transport potential vorticity (Kocin and Uccellini 2004 Volume | — their figure
7.1c) toward the developing cyclonic circulation [Figure 3 Image A], enhance
low-level temperature gradient, for example 850hPa [indicated Figure 4 Images
A and B] and middle level moisture transports [indicated Figure 3 Image B and
Figure 4 Image C] that are required for heavy snowfall (Kocin and Uccellini 2004

Volume ).

Since 700hPa and 300hPa zonal winds (Figure 19 Images B and D) are

available, convergence and divergence, vorticity advection and the presence of
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jet streak circulations can be diagnosed from 700hPa — 300hPa vertical plane

geopotential height fields during this event (Figure 19 Images A and C).

Figure 24 [Images A, B] show the contributions of sensible and latent heat
fluxes in development of cyclones associated with heavy continental snow
events is somewhat less defined than those associated with middle Atlantic and
northeast events. However, notable contributions of latent and sensible heat
fluxes can be seen in vicinity of the cyclone [Image C] associated with this event.
Similar to middle Atlantic and northeast events, notable latent and sensible heat
fluxes are associated with the succeeding anticyclone over the Gulf of Mexico

[Images A, B].

Table 1 has been done to show common or unique variable,
physical/dynamical processes that produced the regional distribution snowfall
and areas of heavy snowfall during the 30-31 January 1982 and 14-15
December 1987 events. Since both of these events were central United States,
Table 1 compares variables, physical/dynamical processes documented or
observed/analyzed that contributed during 30-31 January 1982 that were also
documented or observed/analyzed during 14-15 December 1987. The
exceptions were 850hPa Q vector/isotherm fields (30-31 January 1982) and

mesoscale gravity wave interaction (14-15 December 1987).

c. 19 January 1995 Event

l. Overview
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This event was chosen due to the “sharp” gradient of regional snowfall
intensity, for example, heavy southwest — central Missouri and light/very light
east central Missouri/west central lllinois. Again, elevated convection was
observed and recorded, in particular central — southwest Missouri, although
lesser extent than 30-31 January 1982 and 14-15 December 1987 events. The
storm regional distribution of snowfall is over central United States, in particular

middle Mississippi valley.

“Martin 1998 model analyses of the 19 January 1995 event found that
saturated regions of CSI did not appear in the simulated frontal environment,
suggesting it may not have been an important factor. Instead frontogenesis in the
presence of “across-front” differences in the effective static stability [as measured
in terms of equivalent potential vorticity (EPV) was found to be the circumstance
responsible for the intensity and dimensions of the snow band. Martin 1988
determined that release of convective instability in the ascending branch of the
thermally direct frontal circulation provided the convective component to the
band, manifested in cloud-to-ground lightning and occasional bursts of 5cm h™ *
snowfall rates.” Figure 5C shows 700hPa omega did indeed interact or contribute
with the thermally direct frontal circulation to provide the convective components

that produced categorical snow at the surface.

The results of Martin 1998 further revealed: Ascent of warm, moist air in the
trowel portion of the warm-occluded structure that developed in this case was
shown to contribute to the heavy snowfall. Frontogenesis along the warm-frontal

portion of the warm-occluded structure forced the lifting of air into and through
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the trowel. Also, it is suggested that the trowel, which was a focus of
frontogenesis to the northwest of the cyclone center in this case, is easily
identifiable given emerging visualization technologies, that is, 1998 and current

advances in radiosonde observations.

Il. Analyses of variables and synoptic, mesoscale processes

Figure 6 Images [A], [B], [D] indicate how 850hPa temperature, 850hPa
meridional wind and 850hPa zonal wind interacted during this event. Image [C]
indicates how the 700hPa v-component of storm motion contributed along with
[A], [B] and [D] to produce the regional distribution of snowfall shown in Figure 5

Image D.

Figure 6 Images [B], [C] show the advection role of the low level jet (LLJ)
during this event. Images [A], [B], [C] show how the 850hPa LLJ “complexly
interacted” or contributed along with 850hPa temperature (gradients) — [A] and v-
component of storm motion — [C] to produce heavy snowfall during this event.
Figure 5 Images B and C provide an indication of latent heat release during this

event.

The complex interactions or contributions include 700hPa trough-ridge
systems [Figure 20 Image A] that provide divergence and ascent (700hPa
maximum negative omega) [Figure 5 Image A]. Jet streak circulations embedded
within this trough-ridge system [shown Figure 20 Images A, B, C, D] help focus
ascent patterns [Figure 5 Image C], transport potential vorticity (Kocin and

Uccellini 2004 Volume | — their Figure 7.1c) toward the developing cyclonic
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circulation [Figure 5 Image A], enhance low-level temperature gradients, for
example 850hPa [shown Figure 6 Images A and B] and middle level moisture
transports [shown Figure 5 Image B and Figure 6 Image C] that are required for

heavy snowfall (Kocin and Uccellini 2004 Volume ).

Since 700hPa and 300hPa zonal winds (Figure 20 Images B and D) are
available, convergence and divergence, vorticity advection and the presence of
jet streak circulations can be diagnosed from 700hPa — 300hPa vertical plane

geopotential height fields during this event (Figure 20 Images A and C).

Figure 25 [Images A, B] show the contribution of sensible and latent heat
fluxes in development of cyclones associated with heavy continental snow events
is somewhat less defined than those associated with middle Atlantic and
northeast events. However, notable contributions of latent and sensible heat

fluxes can be seen in vicinity of the cyclone [Image C] associated with this event.

d. 1-2 February 2011 Event

l. Overview

This event was chosen for its cyclone intensity that brought a variety of
precipitation to the central United States; types included heavy snow — west,
southwest/central Missouri/east lowa/central-northeast lllinois, southeast
Wisconsin, snow/ice pellets (sleet), freezing rain — east central Missouri/west
central lllinois, freezing rain/extensive “glazing” — central/southern Indiana. There

was observed and documented elevated convection, in particular
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southwest/central Missouri (compare to 14-15 December 1987 and 19 January
1995), central lllinois. The regional distribution of storm snowfall was not only
central United States, including lakes Michigan, Superior, Huron, but lakes Erie

and Ontario and Northeast United States.

HPC surface analysis — 0000 UTC 2 February 2011, along with upper air
analysis indicated “comma head” region associated with a 996hPa cyclone.
Referring to Rauber et al. 2014 and Rosenow et al. 2014, an upper-tropospheric dry
air stream associated with a cyclone’s dry slot frequently intrudes over lower-level
Gulf of Mexico air in the comma head of strong cyclones. This creates two zones of
precipitation within the comma head: a northern zone characterized by deep
stratiform clouds and topped by “cloud-top generating” cells, and a southern zone
marked by elevated convection. The Rauber et al. 2014 research found that 1049
total lightning flashes occurred within the comma head region of the 1-2 February
2011 cyclone from 1850 UTC 1 February to 1104 UTC 2 February 2011, providing
evidence that elevated convection (see Table 2 — 1-2 February 2011 event column)
was dominant in the region of moderate to heavy snowfall associated with this

winter storm.

Figures 35 through 42 show relevant SPC Hourly Mesoscale Analysis Archive
parameters that contributed to regional maximum observed snowfall accumulation
during the selected time increment 1800 UTC 1 February — 0000 UTC 2 February
2011. These include [700-500hPa mean RH], [300hPa isotachs, ageostrophic wind,
700-500hPa layer-average omegal, [850hPa Pettersen frontogenesis], [850hPa

temperature advection], [850hPa convergence, 250-850hPa differential divergence,
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250hPa divergence], [surface temperature, dewpoint], [near freezing surface wet
bulb temperature], [800-750hPa EPVg-conditional instability], [650-500hPa EPVg-

conditional instability] and [critical thickness].

Il. Analyses of variables and synoptic, mesoscale processes

Figure 8 Images [A], [B], [D] indicate how 850hPa temperature, 850hPa
meridional wind and 850hPa zonal interacted during this event. Image [C] shows
how 700hPa v-component of storm motion contributed along with [A], [B] and [D] to

produce the regional distribution of snowfall shown Figure 7 Image [D].

Figure 8 Images [B], [C] indicate an advection role of the 850hPa low level jet
(LLJ) during this event. Images [A], [B], [C] show how the 850hPa LLJ contributed
along with 850hPa temperature (gradients) — [A] and v-component of storm motion
— [C] to produce heavy snowfall during this event. Figures 35 and 36 provide an

indication of latent heat release during this event.

The complex interactions or contributions include 700hPa trough-ridge systems
[Figure 9 Image A] that provide divergence and ascent (700hPa maximum negative
omega) [Figure 7 Image C] required for cyclogenesis [shown Figure 7 Image A]. Jet
streak circulations embedded within this trough-ridge system [shown Figure 9
Images A, B, C, D] help focus ascent patterns [Figure 7 Image C], transport
potential vorticity (Kocin and Uccellini 2004 Volume I-their Figure 7.1 c) toward the
developing cyclonic circulation [Figure 7 Image A], enhance low-level temperature
gradients, for example 850hPa [shown Figure 8 Images A and B] and middle level

moisture transports [shown Figure 7 Image B and Figure 8 Image C] that are



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

20

required for heavy snowfall (Kocin and Uccellini 2004 Volume I). Since 700hPa and
300hPa zonal winds (Figure 9 Images B and D) are available, convergence and
divergence, vorticity advection and the presence of jet streak circulations can be
diagnosed from the 700hPa — 300hPa vertical plane geopotential height fields

during this event (Figure 9 Images A and C).

Also, mesoscale processes such as 850hPa frontogenesis and LLJ [shown
Figure 8 Images A, D and B] contribute to enhancing the baroclinic environment for
cyclogenesis and focus moisture transports and ascent that enhance the snowfall
rate(s). Cold anticyclones (synoptic scale) generally have to be positioned to the
north of the developing cyclone to sustain the source of level cold air required for
snow (Kocin and Uccellini 2004 Volume I). For the 1-2 February 2011 event, this is
shown in Figure 7 Image A, as a (105000 Pa High) over west North Dakota,

northwest South Dakota, northeast Wyoming and east Montana.

Figure 26 [Images A, B] show the contribution of sensible and latent heat fluxes
in development of cyclones associated with heavy continental snow events is
somewhat less defined than those associated with middle Atlantic and northeast
events. However, notable contributions of latent and sensible heat fluxes can be
seen in vicinity of the cyclone [Image C] associated with this event, in particular

Lakes Superior, Michigan and Huron.

Table 2 was done to show variables, physical/dynamical processes common
and unique to 19 January 1995 and 1-2 February 2011 events. Since mesoscale

gravity wave interaction was only indicated from surface analysis during 1-2
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February 2011, the only unique documented physical/dynamical process was

cyclonic advection of 6e (19 January 1995).

4. Synoptic and Mesoscale Analyses — middle Atlantic and northeast
US events
a. 13-14 March 1993

l. Overview

This event was chosen for the contribution that latent, sensible heat fluxes
and latent heat release played in cyclone development during various stages of
the storm. Again, the extent and intensity of elevated convection, respect to
snowfall, was of considerable interest (compare to other selected events). The
storm regional snowfall distribution (contrast to other selected events) included
not only lakes Superior, Michigan and Huron, but Erie and Ontario, sections of
the southeast United States, east Tennessee — central Alabama, the
Appalachians, Middle Atlantic and Northeast United States, plus sections of New
England.

Reference Kocin and Uccellini 2004 Volume I, the 850hPa isotherm pattern
had taken on the classic “S” on 13 March, as warm-air advection (WAA) was
concentrated north and east of the surface low and cold-air advection (CAA)
occurred to the south and west. These areas of WAA and CAA occur over a
region of “strong” upward vertical motion (w<-1.3) from southeast Virginia to
southern New England [indicated Figure 10C] and correspond to heavy snow

and ice pellets over this same region during the same time period [indicated
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Figure 10D]. As indicated Figure 10A, intense cyclogenesis played an important

role in the 700hPa w=-1.3 region depicted by Figure 10C.

Kocin et al. 1995 provide additional information that indicates the interaction
of parameters listed in Table 3 and their role during the 13-14 March 1993 event:
The 850hPa analysis at 1200UTC 13 March shows that a “massive circulation”
developed in the lower troposphere over the southern United States,
accompanied by an increase in temperature gradients along the baroclinic zone
in northern Florida, eastern Georgia and the Carolinas, plus an increase of
observed wind speeds (for those stations still reporting winds) surrounding the
cyclone. In addition, the 850hPa low center became collocated with the 0°C
isotherm with strong WAA located northeast of the center and strong CAA to the
south. The 0°C to -2°C isotherm corresponds closely to the rain/snow line, with
the greatest manually digitized radar video integrator and processor (VIP) echo
levels found in the southeasterly 850hPa flow from the Atlantic Ocean to North
Carolina and into the Middle Atlantic States as moisture-laden air in the warm

sector of the cyclone ascends over the colder air west of the coast-line.

. Analyses of variables and synoptic, mesoscale processes

Figure 11 Images [A], [B], [D] indicate how 850hPa temperature, 850hPa
meridional wind and 850hPa zonal wind interacted during this event. Image [C]
shows how the 700hPa v-component of storm motion contributed along with [A],
[B] and [D] to produce the regional distribution of snowfall shown in Figure 10

Image D.
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Figure 11 Images [B], [C] an advection role of the low level jet (LLJ) during
this event. Images [A], [B], [C] show how the 850hPa low level jet (LLJ)
“complexly interacted” or contributed with 850hPa temperature (gradients) — [A]
and v-component of storm motion — [C] to produce heavy snowfall during this
event. Figure 10 Images B and C provide an indication of latent heat release

during this event.

Sensible and latent heat fluxes over the Gulf of Mexico and Atlantic Ocean
vicinity of the developing cyclone act to contribute to the cyclone’s rapid
intensification (Kocin and Uccellini 2004 Volume 1). Figures 12, 13, 14, 15
[Images A, B and C 1200 — 1800 UTC 13 March 1993, 1800 UTC 13 March -
0000 UTC 14 March 1993, 0000 — 0600 UTC 14 March 1993, 0600 - 1200 UTC
14 March 1993] clearly show how these <meso-a scale phenomena contributed
to the cyclone’s rapid intensification. This intensification was associated with the

heavy snowfall over the Appalachians and western New York during this event.

The complex interactions or contributions include 700hPa trough-ridge
systems [Figure 21 Image A] that provide divergence and ascent (700hPa
maximum negative omega) [Figure 10 Image C] for cyclogenesis [shown Figure
10 Image A]. Jet streak circulations embedded within this trough-ridge system
[shown Figure 21 Images A, B, C, D] help focus ascent patterns [Figure 10
Image C], transport potential vorticity (Kocin and Uccellini 2004 Volume | — their
Figure 7.1c) toward the developing cyclonic circulation [Figure 10 Image A],
enhance low-level temperature gradients, for example 850hPa [shown Figure 11

Images A and B] and middle level moisture transports [indicated Figure 10 Image
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B and Figure 11 Image C] that are required for heavy snowfall (Kocin and

Uccellini 2004 Volume 1).

Since 700hPa and 300hPa zonal winds (Figure 21 Images B and D) are
available, convergence and divergence, vorticity advection and the presence of
jet streak circulations can be diagnosed from 700hPa-300hPa vertical plane

geopotential height fields during this event (Figure 21 Images A and C).

Il Latent Heat Release —real time

The transition from a closed circulation (1200 — 1800 UTC 13 March 1993) at
900hPa (Figure 28 Image A) to a trough (1200 — 1800 UTC 13 March 1993) at
600hPa (Figure 28 Image B) is a synoptic-scale process that can possibly result
in latent heat release and development of (1200 — 1800 UTC 13 March 1993)
cyclone (Figure 28 Image C). It is the intent of Figure 28 Images A, B, C and
reference Kocin and Uccellini (2004) Volume | to provide an indication of latent

heat release during cyclone development (1200 — 1800 UTC 13 March 1993).

The transition from a closed circulation (1800 UTC 13 March — 0000 UTC 14
March 1993) at 900hPa (Figure 29 Image A) to trough (1800 UTC 13 March —
0000 UTC 14 March 1993) at 600hPa (Figure 29 Image B) is a synoptic-scale
process that can possibly result in latent heat release and development of (1800
UTC 13 March — 0000 UTC 14 March 1993) cyclone (Figure 29 Image C). It is
the intent of Figure 29 Images A, B, C and reference Kocin and Uccellini (2004)
Volume | to provide an indication of latent heat release during cyclone

development (1800 UTC 13 March — 0000 UTC 14 March 1993).
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The transition from a closed circulation (0000 — 0600 UTC 14 March 1993) at
900hPa (Figure 30 Image A) to trough (0000 — 0600 UTC 14 March 1993) at
600hPa (Figure 30 Image B) is a synoptic-scale process that can possibly result
in latent heat release and subsequent development of (0000 — 0600 UTC 14
March 1993) cyclone (Figure 30 Image C). It is the intent of Figure 30 Images A,
B, C and reference Kocin and Uccellini (2004) Volume | to provide an indication

of latent release during cyclone development (0000 — 0600 UTC 14 March 1993).

The transition from a closed circulation (0600 — 1200 UTC 14 March 1993)
at 900hPa (Figure 31 Image A) to trough (0600 — 1200 UTC 14 March 1993) at
600hPa (Figure 31 Image B) is a synoptic-scale process that can possibly result
in latent heat release and subsequent development of (0600 — 1200 UTC 14
March 1993) cyclone (Figure 31 Image C). It is the intent of Figure 31 Images A,
B, C and reference Kocin and Uccellini (2004) Volume | to provide an indication
latent heat release during cyclone development (0600 — 1200 UTC 14 March
1993). Although not high resolution patterns, Figure 10 Image B (700hPa RH
280%) and Image C (700hPa Omega <-1.3 pa s™) are can be considered as

indicators of latent heat release during this event.

b. 25-26 December 2010
l. Overview
Also, this event was chosen for the role that latent, sensible heat fluxes and

latent heat release played in storm cyclone development off the middle Atlantic
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and Northeast United States coasts. However, contrast to 13-14 March 1993
event, the minimum pressure at mean sea level is about 13hPa higher and the
latent, sensible heart fluxes were about half the magnitude. Again, elevated
convection was of interest during this event, although to a lesser extent than 13-
14 March 1993. The storm regional distribution of snowfall is of interest, as east
central Missouri, northeast/east lllinois, north Alabama, middle/east Tennessee,
west North Carolina, Virginia, Middle Atlantic/Northeast states and New England
received notable accumulations.

Figures 43 through 50 show relevant SPC Hourly Mesoscale Analysis
Archive parameters that contributed to the regional maximum snowfall observed
during the selected time increment 0600 — 1200 UTC 26 December 2010. These
include [700-500hPa mean RH], [300hPa isotachs, ageostrophic wind, 700-
500hPa layer- average omega], [850hPa Pettersen frontogenesis], [850hPa
temperature advection], [850hPa convergence, 250-850hPa differential
divergence, 250hPa divergence], [surface temperature, dewpoint], [near freezing
surface wet bulb temperature], [800-750hPa EPVg-conditional instability], [650-
500hPa EPVg-conditional instability] and [critical thickness].

Il. Analyses of variables and synoptic, mesoscale

processes

Figure 17 Images [A], [B], [D] indicate how 850hPa temperature, 850hpa
meridional wind and 850hPa zonal wind interacted during this event. Image [C]

shows how the 700hPa v-component of storm motion contributed along with [A],
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[B] and [D] to produce the regional distribution of snowfall shown in Figure 16

Image D.

Figure 17 Images [B], [C] indicates an advection role of the 850hPa low level
jet (LLJ) during this event. Images [A], [B], [C] show how the 850hPa LLJ
contributed with 850hPa temperature (gradients) — [A] and v-component of storm
motion — [C] to produce heavy snowfall during this event. Figures 43 and 44 are

synoptic, mesoscale indicators of latent heat release.

The complex interactions or contributions include 700hPa trough-ridge
systems [Figure 22 Image A] that provide divergence and ascent (700hPa
maximum negative omega) [Figure 16 Image C] for cyclogenesis [shown Figure
16 Image A]. Jet streak circulations embedded within this trough-ridge system
[shown Figure 22 Images A, B, C, D] help focus ascent patterns [Figure 16
Image C], transport potential vorticity (Kocin and Uccellini 2004 Volume | — their
Figure 7.1c) toward the developing cyclonic circulation [Figure 16 Image A],
enhance low-level temperature gradients, for example 850hPa [indicated Figure
17 Images A and B] and middle level moisture transports [shown Figure 16
Image B and Figure 17 Image C] that are required for heavy snowfall (Kocin and

Uccellini 2004 Volume 1).

Since 700hPa and 300hPa zonal winds (Figure 22 Images B and D) are
available, convergence and divergence, vorticity advection and the presence of
jet streak circulations can be diagnosed from 700hPa-300hPa vertical plane

geopotential height fields during this event (Figure 22 Images A and C).
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Figure 27 indicates the role of sensible and latent heat fluxes similar to 13-14
March 1993 where such €smeso a scale phenomena contributed to the cyclone’s
intensification during this event. Although only about half the intensity, the 25-26
December 2010 sensible and latent heat fluxes [Images A, B] are located vicinity
and southwest of the event cyclone over the Atlantic Ocean and Gulf of Mexico

[Image C].

Table 3 was done to show variables, physical/dynamical processes common
and unique to 13-14 March 1993 and 25-26 December 2010 events. Although
both these storms were primarily Middle Atlantic and Northeast United States
coasts, there were variables, physical/dynamical processes unique to each.
These are differential positive vorticity advection (700-450hPa), EPVg and CI
(850hPa-750hPa) (650-500hPa) (25-26 December 2010) and Isentropic Potential

Vorticity, Potential Vorticity Advection into cyclone center (13-14 March 1993).

5. Summary

This research has analyzed and compared six major heavy snow events. The
four from the central United States are 30-31 January 1982, 14-15 December
1987, 19 January 1995 and 1-2 February 2011. The other two are 13-14 March
1993 and 25-26 December 2010 which impacted parts of the Southeast, Middle
Atlantic and Northeast United States regions. Although the events were analyzed
individually, they were compared 30-31 January 1982 — 14-15 December 1987, 19
January 1995 — 1-2 February 2011 and 13-14 March 1993 and 25-26 December

2010 (Tables 1, 2, 3), according to the regions impacted by heavy snowfall.
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Analysis of maximum negative 700hPa omega areas, 700hPa RH=80% areas,
minimum pressure at mean sea level areas, regional categorical snow at surface,
850hPa temperature (gradient) areas, 850hPa meridional and zonal wind areas,
700hPa v-component of storm motion areas for all six events. Reference Kocin
and Uccellini (2004) Volume 1, this research has shown that a major winter storm,
regardless of region, is “manifestation” of a complex interaction or contributions
among variables that indicate several physical and/or dynamical processes, which
occur on the synoptic to mesoscales. These meteorological phenomena are: 1)
Upper-level trough-ridge systems provide divergence and ascent required for
cyclogenesis. 2) Jet streaks embedded within this trough-ridge system help focus
the ascent patterns, and enhance low-level temperature gradients and moisture
transports that are required for heavy snowfall (1-2 February 2011). 3) “Cold”
anticyclones generally have to be positioned to the north or northwest of the
developing cyclone to sustain the source of low-level arctic or polar continental air

required for heavy snow (1-2 February 2011).

4) Referring to Kocin and Uccellini (2004) Volume [, surface cyclogenesis
associated with Northeast snowstorms, for example 13-14 March 1993, involves
either a primary low pressure center that develops near the Gulf of Mexico or a
secondary low pressure that develops along the Southeast or middle Atlantic coast
and tracks north/northeast along to approximately 200 kilometers offshore (Figure
12, 13, 14, 15 - Image C). These cyclone systems encompass a wide range of
processes throughout the depth of the troposphere that promote interactions of

relatively warm and cold air, in particular 850hPa (Figure 11 Images A, B, D),
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entrain large amounts of water vapor into regions of precipitation, in particular
700hPa (Figure 10 Image B), organize, focus and enhance ascent, in particular
700hPa (Figure 10 Image C). All of which are necessary for the production of

heavy snow during this event.

5) “The evolution of the cyclones that produce these snowstorms is linked to
upper level trough-ridge and embedded jet streak patterns that evolve in a manner
consistent with baroclinic instabilities and self-development concept(s) (Kocin and
Uccellini 2004 Volume 1). Self-development depends on the following conditions
that have been analyzed for the selected events of this study: a) the existence of
an upper level trough-ridge system and jet streaks focus on the divergence aloft, a
necessary condition for maximizing mass divergence and ascent immediately
downstream of the developing surface low; b) an asymmetrical distribution of
clouds and precipitation to focus latent heat release and associated dynamic
feedbacks on the downstream ridge and polar jet streak, both factors that can
enhance the middle troposphere divergence north and east of the storm center; c)
warming is due to an enhanced low level jet and warm air advection pattern
immediately north and east of the developing coastal or continental cyclone.” The
concept accounts for the adiabatic, quasi-geostrophic framework that has been
applied to cyclogenesis (Holton and Hakim 2013, chapter 6) and also for the
various interactions among dynamical and diabatic processes indicated for each of

the selected events analyzed.

6) The influence of curvature effects in minimizing the contribution of jet

streaks to upper-level ageostrophic winds and divergence, and their associated
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vertical motion fields, is discussed in studies by Kocin et al. (1986), Uccellini and
Kocin (1987), Moore and Vanknowe (1992) and Loughe et al. (1995). These
studies indicate that curvature complicates the simple two-dimensional
relationship(s) (as shown by Kocin and Uccellini 2004 Volume | — their Figure 7.1b)
between the ageostrophic wind field associated with jet streaks and divergence.
Diabatic processes especially those related to latent heat release, can also
enhance the vertical motions associated with jet streak circulations (Uccellini et al.
1987). Despite the complications introduced by curvature and diabatic processes,
Loughe et al. (1995) demonstrates that these transverse circulations make a
significant contribution to the divergence aloft and resultant vertical motion patterns

in the entrance and exit region of the jet streak.

Mesoscale (a) processes such as 850hPa frontogenesis, low level jet (LLJ)
contribute to enhancing the baroclinic environment for cyclogenesis and focus the
middle troposphere moisture transports and ascent (maximum negative omega)
that enhance snowfall rates (30-31 January 1982, 14-15 December 1987, 19
January 1995, 1-2 February 2011, 13-14 March 1993 and 25-26 December 2010
events). Sensible and latent heat fluxes over the Gulf of Mexico and Atlantic
Ocean (13-14 March 1993 event) and latent heat release (LHR) within the
developing cyclone (30-31 January 1982, 14-15 December 1987, 19 January
1995, 1-2 February 2011, 13-14 March 1993 and 25-26 December 2010 events) all
act to contribute to the cyclone’s “rapid” intensification. When all these physical
and/or dynamical processes are combined during cyclogenesis in such a manner

to maximize the low/middle troposphere thermal advections and moisture
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transports, enhance ascents (maximum negative omega), yet still maintain a deep
enough layer of (surface to 850hPa) <0°C, heavy snow will, likely, be the outcome,
regardless of event region. However, these processes do not indicate a specific

contribution for LHR in the selected event cyclogenesis.

6. Conclusions

The selected case results further indicate the deepening rates of extratropical
cyclones are related to “complex interactions” (Kocin and Uccellini 2004 Volume 1)
or contributions between thermodynamic and dynamic processes which are
dependent on the horizontal and vertical distributions of the pressure gradient
force especially as it relates to the transition from a closed circulation to a trough
between 900 and 600hPa and subsequent latent heat release. Again, referring to
Kocin and Uccellini (2004) Volume I, within the transition layer between a closed
circulation in the lower troposphere and trough aloft, the release of latent heat
poleward and east the developing cyclone would be especially important for
enhancing the parcel accelerations, divergent airflow (shown in Figures 28 — 36
Image B), surface pressure tendency and associated “rapid” development of the

cyclone (shown in Figures 28 — 36, in particular 28 — 31, Image C).

This study provides evidence of how latent heat release is involved in storm
cyclogenesis during each of the 25-26 December 2010 and 1-2 February 2011
events. For the other events, although not high resolution, NCEP/NARR images of
700hPa RH and 700hPa omega provide an indication latent release. For the 13-14

March 1993 event, air parcels ascending from the lower troposphere to the middle
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troposphere, for example 900hPa to 600hPa, can possibly provide an indication of

latent heat release.

This study identifies a possible “gap” in scientific knowledge between heavy
rain and heavy snow events. The use of SPC Hourly Mesoscale Analysis Archive
parameters to diagnose the 25-26 December 2010 and 1-2 February 2011 events
partially fills this “gap”, in particular 850hPa convergence, 250-850hPa divergence

and 250hPa divergence.

A novel result of this study is that it shows large-scale circulation pattern(s)
which includes ENSO and teleconnections, (variables, synoptic and mesoscale
processes) contribute to episodes of regional snowfall distribution and areas of
heavy snow during six selected events. Although Kocin and Uccellini (2004)
Volume | schematically show how synoptic and mesoscale processes, including
LHR (their Figure 8.1 Images A and B) contribute to heavy snowfall along the
Northeast urban corridor, this research has shown that such processes, including
LHR, can contribute to heavy snowfall over the central United States. It is through
understanding the large-scale circulation pattern(s), (variables, synoptic and
mesoscale processes) contributing to episodes of central United States winter

storms that further advances in the prediction of these events can be made.

Danard (1964) recognized that the inability of the first numerical models to
accurately predict cyclogenesis was partially due to the neglect of latent heat
release. He found that it was necessary to include latent heat release in model

simulations to account for the distribution and magnitude of the vertical motion or
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omega patterns during cyclogenesis and its observed deepening rates.
Krishnamurti’s (1968) application of the quasi-geostrophic omega equation to the
life cycle of a rapidly developing cyclone demonstrates that latent heat release is a
major contributor to vertical motions or omega. Throughout this research study,
focus has been on maximum negative 700hPa omega patterns, their contribution
to intense cyclogenesis due to latent heat release (lower level closed circulation to
middle level trough) and other physical/dynamical processes, using NARR variable
archives. Although Kocin and Uccellini (2004) Volume | acknowledges that
assessing the relative importance of sensible and latent heat processes is difficult,
if not counterproductive, an objective of this research is to encourage NOAA/NWS
forecasters that being more aware of the contributions of latent heat release and
the other synoptic to mesoscale physical processes could definitely improve heavy

snowfall forecasts which are dependent on the large-scale circulation pattern(s).

Another important goal of this research is to focus as much on the synoptic
and mesoscale physical processes, including LHR, as on the forecast parameter
or variable. This emphasis is likely to increase the confidence of snowfall amount
forecast(s) associated with a major winter storm. Study has reached this goal

through presentation analyses, including tables, for each of the six events.

Uccellini et al. 1987 use the phrase “full physics” to refer to model simulation
that includes planetary boundary layer or sensible, latent heat fluxes and latent
heat release. This research has shown that both latent, sensible heat fluxes at
surface and latent heat release (lower to middle levels of troposphere) “complex

interact” (Kocin and Uccellini 2004 Volume 1), “synergistic interact” (Uccellini et al
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1987) or contributed along with other variables synoptic and mesoscale processes
to provide a more “realistic” rate of cyclone development that is prerequisite for
accurate model prediction of the storm regional snowfall distribution and heavy

Snow areas.

While the large-scale circulation (ENSO and teleconnections) which provides
an important framework on which each of the six events evolve is unique for each
event, there are some common patterns. The ENSO patterns are moderate La
Nina for 25-26 December 2010 and 1-2 February 2011 events, neutral conditions
for 13-14 March 1993 and 30-31 January 1982, weak to moderate El Nino for 19
January 1995 and 14-15 December 1987 events. The teleconnection patterns are
weak negative AO for 19 January 1995, 30-31 January 1982 and 14-15 December
1987 events. However, 13-14 March 1993, both AO and NAO were weak positive.
For 1-2 February 2011, January 2011 moderate negative AO became moderate
positive February 2011 AO. Reflecting 25-26 December 2010, AO was strong
negative and NAO was moderate negative. So, central purpose or theme that
unites each of the six cases is the heavy snow that developed during these events
was a “manifestation of a complex interaction” or contribution among the many or
several physical processes that occur on the synoptic and mesoscales. This has

been shown by presentation analyses throughout this study.
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30-31 January 1982 Event 14-15 December 1987 Event

Variable or Parameter
(documented or observation/analysis)

Variable or Parameter
(documented or observation/analysis)

850hPa Low Level Jet (LLJ) 850hPa LLJ
850hPa Warm Air Advection (WAA) 850hPa WAA
850hPa Cold Air Advection (CAA) 850hPa CAA

Latent Heat Release (LHR) Latent Heat Release (LHR)

ws=-1.2 pa st 700hPa w=-0.90 pa st 700hPa

Frontogenesis (Surface, 850hPa,
700- 500hPa)

Frontogenesis (Surface, 850hPa, 700-
500hPa)

CSI/MSI and EPV CSI/MSI and EPV

Cyclone tracks and Cyclogenesis

Cyclone tracks and Cyclogenesis

Elevated Convection

Elevated Convection

700hPa RH=80%

Mesoscale Gravity Wave Interaction

Jet streak-induced Ageostrophic
circulation

EPVg and CI (800-750hPa) (650-
500hPa)

850hpa Temperature Gradients

Jet streak-induced Ageostrophic
circulation
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Enhanced IR Satellite Imagery

700hPa RH=80%

850hPa Q vector/isotherm fields

Enhanced Satellite Imagery

Table 1. Comparison of variables most relevant to the 30-31 January 1982

event with variables most relevant to the 14-15 December 1987 event

19 January 1995 Event

1- 2 February 2011 Event

Variable or Parameter (documented
and/or indicated from surface/upper air
analyses)

Variable or Parameter (documented
and/or indicated from surface/upper air
analyses)

w=-0.90 pa s 700hPa

ws=-1.2 pa st 700hPa

TROWAL

850hPa Temperature (°K)

Frontogenesis (850hPa, 700-500hPa)

850hPa Temperature Gradients (°K)

Elevated Convection

TROWAL and CSI (Cross-sectional
analyses), EPV

EPVg and CI (800-750hPa) (650-500hPa)

Frontogenesis (850hPa, 700-500hPa)

Latent Heat Release (LHR)

Latent Heat Release (LHR)

700hPa RH=80%

700hPa RH=80%

Cyclonic Advection of Be

Elevated Convection

Cyclone tracks and cyclogenesis
(indicated from surface analyses)

Cyclone tracks and cyclogenesis
(indicated from surface analyses)

Jet streak-induced Ageostrophic
circulation (indicated from literature)

Jet streak-induced Ageostrophic
circulation (indicated from literature)

Low Level Jet (LLJ) (indicated from
literature)

Low Level Jet (LLJ) (indicated from
literature)

Warm Air Advection (WAA) (indicated
from literature)

Warm Air Advection (WAA) indicated
from literature)

Cold Air Advection (CAA) (indicated from
literature)

Cold Air Advection (CAA) (indicated from
literature)

Mesoscale Gravity Wave Interaction
(indicated from surface analyses)

Table 2. Parameters relevant to 19 January 1995 event comparison to parameters

relevant to 1-2 February 2011 event

13 - 14 March 1993 Event

25 — 26 December 2010 Event

Variable or Parameter

Variable or Parameter

ws=-1.3 pa st 700hPa

w<=-0.90 pa st 700hPa
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Enhanced IR Satellite Imagery

Frontogenesis (Surface, 850hPa, 700-
500hPa)

850hPa Low Level Jet (LLJ)

Cyclone tracks and Cyclogenesis

CSI/MSI and EPV

Elevated Convection

Frontogenesis (Surface, 850hPa, 700-
500hPa)

EPVg and CI (850hPa-750hPa) (650-
500hPa)

Cyclone tracks and Cyclogenesis

Differential Positive Vorticity Advection
(700-450hPa)

LHR TROWAL
Elevated Convection 700hPa RH=80%
TROWAL LHR

700hPa RH=80% 850hPa WAA
850hPa convergence and 250hPa 850hPa CAA

divergence

850hPa Warm Air Advection (WAA)

Jet streak-induced Ageostrophic
circulation

850hPa Cold Air Advection (CAA)

850hPa LLJ

Isentropic Potential Vorticity

850hPa Temperature Gradients

Latent and Sensible Heat Fluxes at
Surface (Gulf of Mexico and Atlantic
Ocean)

Latent and Sensible Heat Fluxes at
Surface (off middle Atlantic and northeast
coasts)

Jet streak-induced Ageostrophic
circulation

Potential Vorticity Advection into cyclone
center

850hPa Temperature Gradients

827 Table 3. Parameters relevant to 13-14 March 1993 event comparison to parameters

828 relevant to 25-26 December 2010 event

829
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Figure 1. 30-31 January 1982 - Image [A] is event Pressure at Mean Sea
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Figure 2. 30-31 January 1982 — Image [A] is event 850hPa Temperature.
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to produce the regional distribution of snowfall shown in Figure 1 Image
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Figure 5. 19 January 1995 — Image [A] is event Pressure at Mean Sea
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cyclone center that enhance snowfall rates, subsequently increase
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Figure 8. 1-2 February 2011 — Image [A] is event 850hPa Temperature. Image
[B] is 850hPa Meridional Wind. Image [C] is event 700hPa V-Component of
Storm Motion. Image [D] is event 850hPa Zonal Wind. Images [A], [B], [C], [D]
indicate a complex interaction of these variables to produce the regional
snowfall distribution shown in Figure 7 Image [D].
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877 Figure 9. 1-2 February 2011 — Image [A] is event 700hPa Height. Image [B] is
event 700hPa Zonal Wind. Image [C] is event 300hPa Height. Image [D] is
878 event 300hPa Zonal Wind. Images [A], [B], [C], [D], also, indicate a complex
interaction of these variables to produce the regional distribution of snowfall
shown in Figure 7 Image D.
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Figure 10. 13-14 March 1993 — Image [A] is event Pressure at Mean Sea
Level<98750. Image [B] is event 700hPa RH=80%. Image [C] is event 700hPa
Omegas-1.3. Image [D] is event Categorical Snow at Surface<1. Images [A],
[B], [C] indicate a complex interaction of these variables to produce the
regional distribution of snowfall shown in Image [D] and focus on the patterns
of middle level moisture and ascent north-northeast of the cyclone center that
enhance snowfall rates, subsequently increase accumulations.
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Figure 11. 13-14 March 1993 — Image [A] is event 850hPa Temperature. Image [B]
is event 850hPa Meridional Wind. Image [C] is event 700hPa V-Component of
Storm Motion. Image [D] is event 850hPa Zonal Wind. Images [A], [B], [C], [D]
indicate a complex interaction of these variables to produce the regional
distribution of snowfall shown in Figure 9 Image [D].
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Figure 12. 13-14 March 1993 — Image [A] is event Latent Heat Flux at
903 Surface 1200 — 1800 UTC 13 March 1993. Image [B] is event Sensible
Heat Flux at Surface 1200 — 1800 UTC 13 March 1993. Image [C] is event
Pressure at Mean Sea Level 1200 — 1800 UTC 13 March 1993.
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913

914 Figure 13. 13-14 March 1993 — Image [A] is event Latent Heat Flux at
Surface 1800 UTC 13 March — 0000 UTC 14 March 1993. Image [B] is

915 event Sensible Heat Flux at Surface 1800 UTC 13 March — 0000 UTC 14
March 1993. Image [C] is event Pressure at Mean Sea Level 1800 UTC
13 March — 0000 UTC 14 March 1993.
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Figure 14. 13-14 March 1993 — Image [A] is event Latent Heat Flux at

926 Surface 0000 — 0600 UTC 14 March 1993. Image [B] is event Sensible
Heat Flux at Surface 0000 — 0600 UTC 14 March 1993. Image [C] is event
Pressure at Mean Sea Level 0000 — 0600 UTC 14 March 1993.
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Figure 15. 13-14 March 1993 — Image [A] is event Latent Heat Flux at
Surface 0600 — 1200 UTC 14 March 1993, Image [B] is event Sensible
937 Heat Flux at Surface 0600 — 1200 UTC 14 March 1993. Image [C] is
event Pressure at Mean Sea Level 0600 — 1200 UTC 14 March 1993.
938
939
940

941



NCEF North Amarfcan Regional Reanalysis

A Pressure ot Mean Sea Level {Po) Composite Mean
}#mm \ = {/ //W/ A/ NOAA/ESRL Physical Seiences Div

48N ' 06 .

i (N e
4 '9075 "“";3..’ if"' 1050

o 2

=tk Y] i wsz

N A :/
K

Lol YIn
Jm’ 7 “
b

24
130W 125K 1Z0W  115W 110K 1G5W 1008 U5W 90K

947

130W 128w 120W  118W 110w 10BW  100W  ooW D0 BEW EOW aw TN

2010/12/26 G92,2010/12/26 15z

NCEP Narth American Regional Reanalysis
Omaga (Pascal/s) Compasite Mean

NOAA/ESRL Physical Sciences

2010/12/26 122,2010/12/26 162

56

NGsA/ESRL Physkal Sclknces Ghlafon

o
=4

AT T T T T T T T T -
T R

L L R, |

2

700mb Rel, Humidity (%) Composite Mean
12/26/10 12z ta 12/26/10 182

NCEF/NCGAR Reanalysis

NCEP Nerth Amarican Regional Reanalysis
Caotagorical Snow ot Surface (1) Gomposite Mean

Physical Science

e s =, N

942
Figure 16. 25-26 December 2010 — Image [A] is event Pressure at Mean Sea
Level<100000. Image [B] is event 700hPa RH=80%. Image [C] is event 700hPa

943 Omegas-0.90. Image [D] is event Categorical Snow at Surface<1. Images [A], [B],
[C] indicate a complex interaction of these variables to produce the regional

944 distribution of snowfall shown in Image [D] and focus on the patterns of middle level
moisture and ascent north-northeast of the cyclone center that enhance event

945 snowfall rates, subsequently increase accumulations.
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Figure 17. 25-26 December 2010 — Image [A] is event 850hPa Temperature.
Image [B] is event 850hPa Meridional Wind. Image [C] is event 700hPa V-
Component of Storm Motion. Image [D] is event 850hPa Zonal Wind. Images
[A], [B], [C], [D] indicate a complex interaction of these variables to produce
the regional distribution of snowfall shown Figure 11 Image [D].
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shown in Figure 1 Image D.

Figure 18. 30-31 January 1982 — Image [A] is event 700hPa Height. Image [B]
is event 700hPa Zonal Wind. Image [C] is event 300hPa Height. Image [D] is
event 300hPa Zonal Wind. Images [A], [B], [C]. [D], also, indicate a complex
interaction of these variables to produce the regional distribution of snowfall
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Figure 19. 14-15 December 1987 — Image [A] is event 700hPa Height. Image
[B] is event 700hPa Zonal Wind. Image [C] is event 300hPa Height. Image [D]
is event 300hPa Zonal Wind. Images [A], [B], [C], [D] indicate a complex
interaction of these variables to produce the regional distribution of snowfall
shown in Figure 3 Image D.
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Figure 20. 19 January 1995 — Image [A] is event 700hPa Height. Image [B]
is event 700hPa Zonal Wind. Image [C] is event 300hPa Height. Image [D] is
event 300hPa zonal wind. Images [A], [B], [C], [D] indicate a complex
interaction of these variables to produce the regional distribution of snowfall
in Figure 5 Image D.




61

NCEF North Amarican Regional Reanalysis NCEF North Amasrican Regional Reanalysis
Geopotentiol Height (m) Composite Mean Zonal Wind (m/s) Composite Mean

R NOAA/ESRL Physical Sciences Divisian
5 =

(i

YT

B
RN

T30W 1250 1ZOW  T1SW 110W  1OSW  foow oW 90w BEW  BOW  T5W U30W 1256 1ZOW 1158 110W  feSW 100N 9SW  90W  BAW  BOW 7w oW B
1993/03/13 162,1993/03/14 00z 1993/03/13 182,1993/03/14 00z

NCEP Nerth amarican Regional Reanalysis NCEF Morth American Regional Reanalysis
C Geopotantial Haight (m) Composits Msan Zonal ¥ind (m/s) Composite Mean
51N =mmx }
T v NOAA/ESRL Physical Science &N NOAA7ESAL Physical Saiences Divisian
! -
4 e 450
- -
9250
4N m ATN
I e il W an
E 2 360
= s
30N
9EE0 n
o / 2m
TOW A2 A20W 1B HIOW 1GBW 1008 oo ook WSOW  1ZoW  1zow 115w 10w (Gow  100%  SEW 90w BN Aot 7eW 7N &

1993/03/13 182,1993/03/14 00z 1993/03/13 182,1993/03/14 00z

Figure 21. 13-14 March 1993 — Image [A] is event 700hPa Height. Image
[B] is event 700hPa Zonal Wind. Image [C] is event 300hPa Height. Image
[D] is event 300hPa Zonal Wind. Images [A], [B], [C], [D] indicate a

973 complex of these variables to produce the regional distribution of snowfall
shown in Figure 10 Image D.
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Figure 22. 25-26 December 2010 — Image [A], is event 700hPa Height. Image
[B] is event 700hPa Zonal Wind. Image [C] is event 300hPa Height. Image [D]
is event 300hPa Zonal Wind. Images [A], [B], [C], [D] indicate a complex
interaction of these variables to produce the regional distribution of snowfall
shown in Figure 16 Image D.
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1112 Figure 34. 19 January 1995 — Image A is 1200 — 1800 UTC 19 January 1995
900hPa Height. Image B is 1200 — 1800 UTC 19 January 1995 600hPa Height.

1113 Image C is 1200 — 1800 UTC 19 January 1995 Pressure at Mean Sea Level.
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Figure 35. Image A is 1800 UTC 1 February 2011 700hPa Height, Wind,
Temperature and 700-500hPa mean RH (fill). Image B is 2100 UTC 1 February
2011 700hPa Height, Wind, Temperature and 700-500hPa mean RH (fill). Image
C is 0000 UTC 2 February 2011 700hPa Height, Wind, Temperature and 700 —
500hPa mean RH (fill).
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Figure 36. Image A is 1800 UTC 1 February 2011 300hPa Isotachs, Height
and Ageostrophic Wind, 700-500hPa layer average Omega (magenta up).
Image B is 2100 UTC 1 February 2011 300hPa Isotachs, Height and
Ageostrophic Wind, 700-500hPa layer average Omega (magneta up). Image
C is 0000 UTC 2 February 2011 300hPa Isotachs, Height and Ageostrophic
Wind, 700-500hPa layer average Omega (magenta).
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Figure 37. Image A is 1800 UTC 1 February 2011 850hPa Frontogenesis (fill),
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Figure 38. Image A is 1800 UTC 1 February 2011 850hPa Temperature
Advection (fill), 850hPa Height, Temperature and Wind. Image B is 2100 UTC 1
February 2011 850hPa Temperature Advection (fill), 850hPa Height,
Temperature and Wind. Image C is 0000 UTC 2 February 2011 850hPa
Temperature Advection (fill), 850hPa Height, Temperature and Wind.
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Figure 39. Image A is 1800 UTC 1 February 2011 850hPa Convergence (red),
250-850hPa Differential Divergence (fill) and 250hPa Divergence (purple). Image
B is 2100 UTC 1 February 2011 850hPa Convergence (red), 250-850hPa
Differential Divergence (fill) and 250hPa Divergence (purple). Image C is 0000
UTC 2 February 2011 850hPa Convergence (red), 250-850hPa Differential
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Figure 40. Image A is 1800 UTC 1 February 2011 Surface Temperature,
Dewpoint and pmsl. Image B is 2100 UTC 1 February 2011 Surface
Temperature, Dewpoint and pmsl. Image C is 0000 UTC 2 February 2011
Surface Temperature, Dewpoint and pmsl.
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Figure 41. Image A is 1800 UTC 1 February 2011 Near Freezing Surface Wet
Bulb Temperatures, Sea Level Pressure and Wind. Image B is 2100 UTC 1
February 2011 Near Freezing Surface Wet Bulb Temperatures, Sea Level
Pressure and Wind. Image C is 0000 UTC 2 February 2011 Near Freezing Surface
Wet Bulb Temperatures, Sea Level Pressure and Wind.
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1215 Figure 42. Image A is 2100 UTC 1 February 2011 850hPa Frontogenesis (red
isolines), 800-750hPa EPVg (shaded) & Conditional Instability. Image B is 2100
UTC 1 February 2011 700hPa Frontogenesis (red isolines), 650-500hPa EPVg

1216 (shaded) & Conditional Instability. Image C is 2100 UTC 1 February 2011 Critical
Thickness 1000-500hPa (red), 1000-700hPa (green), 1000-850hPa (blue), 850-

1217 700hPa (yellow), Surface Temperature 0C (magenta).
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Figure 43. Image A is 0600 UTC 26 December 2010 700hPa height, wind,
temperature and 700-500hPa mean RH (fill). Image B is 0900 UTC 26
December 2010 700hPa height, wind, temperature and 700-500hPa height,
wind, temperature and 700-500hPa mean RH (fill). Image C is 1200 UTC 26
December 2010 700hPa height, wind, temperature and 700-500hPa mean RH

(fill).
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1241 Figure 44. Image A is 0600 UTC 26 December 2010 300hPa isotachs (fill),
height, ageostrophic wind and 700-500hPa layer average omega (magenta - up).

1242 Image B is 0900 UTC 26 December 2010 300hPa isotachs (fill), height,
ageostrophic wind, and 700-500hPa layer average omega (magenta — up). Image

1243 C is 26 December 2010 300hPa isotachs (fill), height, ageostrophic wind and 700-
500hPa layer average omega (magenta — up).
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Figure 45. Image A is 0600 UTC 26 December 2010 850hPa frontogenesis (fill),
850hPa height, temperature and wind. Image B is 0900 UTC 26 December 2010
850hPa frontogenesis (fill), 850hPa height, temperature and wind. Image C is
1200 UTC 26 December 2010 850hPa frontogenesis (fill), 850hPa height,
temperature and wind.




26/0900Y001 830 mh Temperatere advection (f111)
22670300V001 830 mk hoishi. temporature and wind

1258

1259

1260

1261

1262

1263

1264 ; iy

Y - 2y
_ ks fi
PO DY j 3
1265 ‘ﬁ / ‘3\‘ S / Lo

1226/1200¥001 850 mb temperature advectlon (#1111
1226/1200¥001 &30 mbk helant. temperature and wWind

oo

1266
Figure 46. Image A is 0600 UTC 26 December 2010 850hPa temperature
1267 advection (fill), 850hPa height, temperature and wind. Image B is 0900 UTC 26
December 2010 temperature advection (fill), 850hPa height, temperature and
wind. Image C is 1200 UTC 26 December 2010 850hPa temperature advection
1268 (fill), 850hPa height, temperature and wind.
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Figure 47. Image A is 0600 UTC 26 December 2010 850hPa convergence (red
isolines), 250-850hPa differential divergence (fill), 250hPa divergence (purple
isolines). Image B is 0900 UTC 26 December 2010 850hPa convergence (red
isolines), 250-850hPa differential divergence (fill), 250hPa divergence (purple
isolines). Image C is 1200 UTC 26 December 2010 850hPa convergence (red
isolines), 250-850hPa differential divergence (fill), 250hPa divergence (purple

isolines).
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Figure 48. Image A is 0600 UTC 26 December 2010 Surface temperature,
dewpoint and pmsl. Image B is 0900 UTC 26 December 2010 Surface
temperature, dewpoint and pmsl. Image C is 26 December 2010 Surface
temperature, dewpoint and pmsl.
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Figure 49. Image A is 0900 UTC 26 December 2010 850hPa Frontogenesis (red
isolines), 800-750hPa EPV(g (shaded) & conditional instability. Image B is 0800
UTC 700hPa Frontogenesis (red isolines), 650-500hPa EPVg (shaded) &
conditional instability. Image C is 0900 UTC 26 December 2010 Critical
Thickness 1000-500hPa (red), 1000-700hPa (green), 1000-850hPa (blue), 850-
700hPa (yellow), surface temperature OC (magenta).
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Figure 50. Image A is 0600 UTC 26 December 2010 Near freezing surface wet
bulb temperatures, sea level pressure and wind. Image B is 0900 UTC 26
December 2010 Near freezing surface wet bulb temperatures, sea level pressure
and wind. Image C is 1200 UTC 26 December 2010 Near freezing surface wet
bulb temperatures, sea level pressure and wind.
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