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1. Introduction	
	

Numerical	 models	 are	 producing	 updated	
forecasts	 more	 frequently	 as	 computing	
resources	increase.	Some	updates	are	plagued	
by	 large	 changes	 from	 one	 time	 to	 the	 next,	
causing	 users	 to	 lose	 confidence	 in	 the	
forecasts.	 For	 forecasts	 that	 are	 revised,	
especially	 those	 with	 frequent	 updates,	 the	
magnitude	 and	 randomness	 of	 the	 revision	
series	 is	 an	 important	 aspect	 of	 forecast	
quality.	 Similar	 problems	 exist	 in	 economics	
and	other	fields,	and	many	types	of	metrics	are	
in	 place	 for	 simple	 updating	 time	 series.	
Unfortunately,	 though	 everyone	 knows	
forecast	jumpiness	when	they	see	it,	it	is	rarely	
measured	 objectively	 in	 weather	 forecasting	
(Roebber,	 1990;	 Lashley	 et	 al,	 2008).	 Users	
may	examine	dprog/dt	and	even	calculate	the	
total	difference	in	the	forecast	from	one	time	
to	 the	 next.	 However,	 this	 measure	 suffers	
from	 the	 same	 double	 penalty	 issues	 as	
traditional	verification	measures,	namely	that	
a	 small	 displacement	may	 be	measured	 as	 a	
large	 change	 at	 multiple	 locations.	 McLay	
(2010)	 and	 Zsoter	 et	 al	 (2009)	 apply	
consistency	metrics	to	ensemble	forecasts.	 In	
this	 presentation,	 assessments	 of	 forecast	
revision	 magnitude	 and	 randomness	 are	
applied	to	attributes	of	forecast	objects	using	
spatial	 verification	 techniques,	 thus	
incorporating	 temporal	 and	 spatial	
information	into	the	assessment.	Examples	of	
revision	 assessments	 from	 probability	
forecasts	 from	 a	 high	 resolution	 time-lagged	
ensemble	 that	 is	 updated	 hourly	 are	
presented.		

Users	of	 forecasts	are	often	 interested	 in	
the	 consistency	 of	 updating	 forecasts	 for	 a	

terminal	event	time.	In	this	instance,	users	are	
evaluating	 an	 experimental	 time-lagged	
ensemble	 that	 produces	 a	 hazard	 probability	
forecast,	updated	hourly.	They	desire	to	have	
objective	measures	of	forecast	consistency	to	
either	 confirm	 or	 refute	 the	 perception	 that	
time-lagged	 ensembles	 provide	 greater	
consistency	 than	 do	 traditional	 ensemble	
forecasts.		

Because	 the	 focus	 of	 the	 hazard	
probability	forecasts	is	precipitation,	all	of	the	
usual	issues	with	traditional	verification	arise.	
Basic	 measures	 of	 consistency	 are	 typically	
computed	for	fixed	locations,	and	just	like	root	
mean	 square	error	 (RMSE)	and	probability	of	
detection	 (POD),	 these	 can	 be	 affected	
drastically	by	displacements,	etc.		

Both	 the	 magnitude	 and	 randomness	 of	
the	revision	series	impact	forecast	consistency.	
Small,	 random	 revisions	 are	 typically	 of	 little	
interest.	 Large,	 consistent	 updates	 usually	
point	 to	 a	 forecast	 reacting	 appropriately	 to	
recent	information.	Thus,	the	goal	is	to	identify	
forecasts	 with	 both	 large	 and	 random	
revisions.	 For	 this	 work,	 assessments	 of	
forecast	 revision	magnitude	 and	 randomness	
are	 applied	 to	 attributes	 of	 forecast	 objects	
using	 a	 spatial	 verification	 technique,	 thus	
incorporating	 both	 temporal	 and	 spatial	
information	 into	the	assessment.	The	metrics	
have	 all	 been	 previously	 proposed	 and	 used,	
the	 novelty	 here	 is	 their	 application	 to	
revisions	series	of	object	attributes.	

	

2. Methods		
	

The	 suite	 of	 metrics	 presented	 here	



	
	

measure	forecast	consistency	based	on	object	
attributes.	 This	 effort	 does	 not	 define	 a	 new	
metric,	 strictly	 speaking.	 Rather,	 it	 provides	
new	 information	 by	 combining	 existing	
methods	 and	 metrics	 in	 a	 novel	 way.	
Characteristics	 of	 probability	 forecasts	 are	
determined	 by	 features-based	 spatial	
verification	 software,	 MODE-TD	 (Method	 for	
Object-based	 Diagnostic	 Evaluation	 –	 Time	
Domain),	 that	 tracks	 objects	 through	 their	
series	of	updates.	Then	the	revision	in	various	
attributes	from	each	time	compared	with	the	
previous	time	are	calculated.	 	These	revisions	
are	 assessed	 via	 existing	 statistical	 tests	 for	
randomness	 and	magnitude.	 In	 this	way,	 the	
changes	in	a	feature	can	be	evaluated	through	
time	without	regard	to	specific	locations.	This	
small	 suite	of	metrics	provides	more	detailed	
information	 to	 users	 than	 a	 single	 metric	 or	
index.	Further,	they	allow	some	choices	to	the	
user	in	determining	the	most	appropriate	way	
to	 measure	 magnitude	 and	 randomness	 for	
their	data.		

The	 MODE-TD	 software	 identifies	 and	
tracks	 objects	 in	 a	 succession	 of	 forecasts.	
Predominantly,	it	has	been	used	on	individual	
model	 runs	 with	 increasing	 lead	 time,	 thus	
tracing	 the	 evolution	 of	 forecast	 systems	 as	
time	 goes	 on.	 However,	 it	 functions	 equally	
well	on	a	series	of	forecasts	with	the	same	valid	
time	from	different	model	runs	and	thus,	with	
decreasing	 lead	 times.	Hereafter,	we	 refer	 to	
these	 forecasts	 as	 ‘updating’	 forecasts.	 The	
change	 in	 the	 forecast	 attribute	 from	 each	
time	 to	 the	 prior	 is	 the	 ‘revision’.	 Thus,	
increases	in	the	forecast	are	positive	revisions	
and	 decreases	 in	 the	 forecast	 are	 negative	
revisions.	 The	 examples	 here	 focus	 on	
consistency	in	areal	coverage	of	the	probability	
of	 snowfall.	 Use	 of	 other	 object	 attributes	 is	
possible,	depending	on	the	forecast	type.		

A	 consistency	 measure	 can	 certainly	 be	
applied	 to	 time-series	 from	 individual	 grid	
points.	 However,	 many	 of	 the	 same	 issues	
apply	 as	when	 standard	 verification	 statistics	

are	used	in	this	manner.	If	a	feature	moves,	but	
remains	 otherwise	 similar,	 it	 may	 be	
considered	 relatively	 consistent.	 However,	 a	
time	series	 from	an	 individual	grid	point	may	
show	that	the	feature	disappears	completely,	
which	is	definitely	not	consistent.	

The	autocorrelation	and	Wald	Wolfowitz	
tests	 are	 used	 to	measure	 the	 association	 of	
forecasts	through	time.	Two	tests	are	included	
because	each	has	different	types	of	sensitivity	
and	robustness,	similar	to	the	use	of	the	mean	
and	 median.	 The	 autocorrelation	 uses	
continuous	measures,	so	it	is	sensitive	but	not	
robust.	 The	Wald	Wolfowitz	 uses	 categorical	
information,	making	it	robust	to	outliers.	These	
tests	 have	 been	 demonstrated	 previously	 on	
updating	 forecast	 data	 (Fowler,	 2010).	
Additionally,	they	were	extended	to	hurricane	
track	 and	 intensity	 forecasts	 (Fowler	 et	 al.,	
2015).			

The	 autocorrelation	 is	 the	 same	 as	 the	
Pearson	 correlation,	 but	 using	 the	 revision	
series.	 Thus,	 it	 is	 familiar	 to	 the	 weather	
forecasting	 community	 and	 simple	 to	
interpret.	 The	 distribution	 of	 the	
autocorrelation	 is	 known,	allowing	 for	 simple	
determination	 of	 statistical	 significance	 (i.e.	
calculation	of	hypothesis	tests	and	confidence	
intervals).	 However,	 the	 autocorrelation	
calculation	is	not	robust	(Clements,	1997).	It	is	
sensitive	to	outliers	and	lack	of	stationarity	(a	
change	 in	 location	 and/or	 variability)	 in	 the	
time	 series.	 Autocorrelation	 of	 revisions	 can	
tell	us	if	the	forecast	is	stepping	toward	some	
new	forecast	value	or	zigzagging.	This	is	not	a	
measure	 of	 convergence,	 as	 both	 series	may	
converge.	

The	Wald	Wolfowitz	test	(1943)	tests	for	
the	random	distribution	of	 ‘runs’,	or	series	of	
the	same	value,	of	two	discrete	categories.	As	
an	 example,	 in	 this	 series	 of	 positive	 and	
negative	 values,	 +++++----++,	 there	 are	 three	
runs.	For	this	analysis,	the	two	categories	are	
positive	 or	 negative.	 When	 analysing	 the	



	
	

revisions,	 the	 positive	 and	 negative	 values	
indicate	 the	 direction	 of	 change	 of	 the	
forecast.	The	test	cannot	be	applied	unless	the	
series	has	at	least	two	runs.		

We	can	calculate	the	expected	number	of	
runs	 if	 the	 two	 categories	 are	 arranged	with	
respect	to	time	at	random.	The	two	categories	
need	not	have	equal	probability.	Then,	a	one-
sided	test	for	too	few	runs	will	conclude	if	the	
series	 has	 fewer	 changes	 between	 negative	
and	 positive	 than	would	 be	 expected	 from	 a	
random	 series	 of	 positives	 and	 negatives.	 A	
series	with	more	changes	than	a	random	series	
is	not	consistent	through	time,	so	there	 is	no	
need	to	have	a	two-sided	test.		

The	runs	test	is	very	robust	to	outliers	and	
to	 lack	 of	 stationarity	 in	 the	 time	 series,	
because	 the	 data	 are	 comprised	 only	 of	 two	
categories.	However,	 a	 threshold	 for	 dividing	
the	 series	 into	 positive	 and	 negative	 values	
must	 be	 chosen.	When	 series	 values	 lie	 very	
close	 to	 this	 threshold	 value,	 the	 test	 can	be	
quite	sensitive	to	the	choice	of	threshold.	Too	
few	runs	in	the	revision	series	tell	us	that	the	
forecast	changes	are	consistent	through	time.	

	

	
	
3. Examples		

Examples	 of	 revision	 assessments	 from	
probability	 forecasts	 from	 a	 high	 resolution	
time-lagged	 ensemble	 that	 is	 updated	hourly	
are	 discussed.	 In	 particular,	 it	 is	 desirable	 to	
evaluate	 changes	 in	 POP	 forecasts	 without	
restricting	 them	 to	 specific	 locations.	 The	
experimental	 model	 HRRR-TLE	 (High	
Resolution	 Rapid	 Refresh	 –	 Time	 Lagged	
Ensemble)	 produces	 hourly	 updates	 of	
probability	 of	 snowfall	 forecasts	 over	 the	
CONUS.	 These	 examples	 use	 probability	 for	
snowfall	rates	>	0.5”.	All	forecasts	are	valid	at	
January	23,	2016	0Z,	with	lead	times	beginning	
13	 hours	 ahead	 and	 decreasing	 hourly.	 The	
MODE-TD	 software	 was	 used	 to	 track	 four	
forecast	 objects	 through	 a	 series	 of	 updates.	
Additionally,	 the	 total	 domain	 forecast	 is	
included	 here	 as	 object	 5.	 Attributes	 of	 two-
dimensional	probability	objects	were	derived,	
though	 MODE-TD	 can	 also	 calculate	 three-
dimensional	 attributes.	 By	 taking	 differences	
at	each	time	step,	a	revision	series	is	derived.	
For	 probabilities,	 object	 area	 	 may	 be	 an	
interesting	attribute.	

	

	

Figure	 1:	 Line	 plot	 showing	 area	 of	 each	 object	 as	 a	
percent	 of	 final	 object	 area	 for	 each	 individual	 object	
plus	the	entire	domain	(object	5).	

	

Figure	 2:	 Line	 plot	 showing	 area	 revisions	 for	 each	
individual	 object	 plus	 the	 entire	 domain.	 The	
autocorrelation	value	of	each	revisions	series	is	shown	
in	the	legend.	None	are	statistically	significant,	possibly	
due	to	the	sample	size	typical	of	a	single	case	study.	



	
	

	

Figure	3:	Runs	test	graphic	showing	increases	and	decreases	in	forecast	area	revision	series	for	objects	2	(left)	and	object	
3	(right).	Dashed	lines	delineate	each	run.	Object	2	has	only	2	runs	and	a	p-value	=	0.036,	indicating	a	trend	in	the	revisions.	
Object	3	has	6	runs	with	a	p-value	=	0.75,	indicating	randomness.	

	

Figure	1	shows	the	area	of	each	object	with	
decreasing	lead	time	as	a	percent	of	the	object	
area	at	the	valid	time.	Object	2	stands	out	as	
having	 a	 distinct	 increasing	 trend.	 Figure	 2	
shows	the	revisions	in	the	area	of	each	object	
from	as	the	forecast	updated.	Visually,	object	
3	stands	out	as	having	some	 large,	oscillating	
revisions.	 The	 autocorrelation	 and	 Wald	
Wolfowitz	tests	may	not	give	the	same	answer.	
In	particular,	for	object	2,	the	autocorrelation	

(0.299)	is	not	statistically	significant	(probably	
due	 to	 small	 sample	 size,	 though	 it	 is	 larger	
than	 the	 values	 for	 the	 other	 objects),	 while	
the	 runs	 test	 (Figure	 3)	 shows	 a	 significant	
trend	 in	 the	revisions	 (p-value	0.036).	 (This	 is	
distinct	from	a	trend	in	the	forecast,	as	overall	
a	forecast	area	can	increase	while	the	revisions	
oscillate.)	 Meanwhile,	 object	 3	 shows	 no	
significant	 autocorrelation	 (-0.036)	 and	 the	
runs	test	agrees	(6	runs,	p-value	0.75).	

							

	

Figure	4:	Boxplots	showing	absolute	area	revision	for	each	
object	(1-4)	plus	the	overall	domain	(5).	The	mean	absolute	
revision	is	indicated	by	the	filled	diamond	in	each	box,	while	
the	median	is	the	center	of	the	‘waist’	of	each	box.	

	

Figure	 5:	 Graphic	 showing	 MODE-TD	 tracked	 area	 for	
forecast	objects	(probability	of	½”	snowfall	>	0).	An	object	
that	is	completely	consistent	across	updates	would	appear	
with	straight	sides.	Objects	‘grow	up’	with	decreasing	lead	
time.	 In	 dark	 blue,	 two	object	 are	 shown	merging	 as	 the	
valid	time	approaches	(top	of	the	graphic).	



	
	

Figure	4	shows	boxplots	of	the	magnitude	
of	the	revisions	for	each	object	(1-4)	plus	the	
overall	domain	(object	5).	Object	2	and	4	show	
much	smaller	revisions	than	object	1,	3,	and	5.	
Users	 may	 also	 assess	 magnitude	 of	 the	
revisions	via	the	mean	absolute	revision	or	the	
root-mean	 square	 of	 the	 revision.	 Object	 2	
showed	a	trend	 in	the	forecast	area	revisions	
and	the	magnitude	of	the	change	is	relatively	
small.	 The	 other	 objects,	 especially	 object	 3,	
and	 the	 overall	 domain	 have	 larger,	 random	
revisions,	 indicating	 a	 lack	 of	 consistency	 in	
these	updates.	Of	course,	ideally	these	metrics	
should	be	applied	to	a	large	number	of	cases,	
and	 the	 magnitude	 should	 be	 judged	 via	
comparison	 to	 some	 reference	 or	 competing	
forecast.		

Figure	5	shows	a	MODE-TD	object	graphic.	
Two-dimensional	 object	 areas	 are	 stacked	
vertically,	 with	 the	 longest	 lead	 times	 at	 the	
bottom	and	shortest	at	the	top.	An	object	with	
perfect	consistency	in	the	updates	would	have	
‘smooth’	sides.	The	movements	and	growth	of	
some	objects	are	easily	seen,	as	is	the	merging	
of	 two	objects	near	 the	US	west	coast	as	 the	
valid	time	approaches.	
	
4. Conclusions		
	

The	examples	here	are	from	a	single	case	
study,	 for	 ease	 of	 interpretation.	 However,	
these	metrics	are	easily	extended	to	larger	sets	
of	cases.	In	this	example,	we	grouped	the	four	
individual	 objects	 into	 object	 5,	 covering	 the	
whole	domain.	This	accumulation	can	also	be	
accomplished	 across	 a	 set	 of	 forecasts	 to	
determine	 overall	 consistency	 and	 guide	 the	
forecaster	 on	 interpretation	 of	 forecast	
revisions.	 	 Additionally,	 forecasters	 are	
encouraged	to	provide	consistent	forecasts	to	
the	public	unless	large	changes	are	warranted.		
Therefore,	guidance	with	optimal	consistency	
measures	are	more	likely	to	be	adopted	by	the	
forecast	community.	

There	 are	 several	 metrics	 related	 to	
forecast	 consistency.	 Dprog/dt	 is	 often	

examined,	 but	 in	 many	 cases	 the	
determination	is	subjective	(Hamill,	2003).	The	
Ruth-Glahn	 Forecast	 Convergence	 Score	
(2009;	Pappenberger	et	al,	2011)	and	Griffith’s	
Flip	Flop	Index	combine	a	magnitude	threshold	
with	 a	 ratio	 of	 flip-flops	 at	 fixed	 locations	 to	
determine	 consistency.	 	 Ehret’s	 (2010)	
convergence	 index	also	uses	a	 threshold,	but	
weights	 short	 lead	 times	more	 than	 far	 lead	
times.	 Further,	 the	 concern	 is	 primarily	 with	
convergence	 (decreasing	 error)	 rather	 than	
random	oscillation.	All	of	 these	measures	are	
typically	 used	 at	 a	 fixed	 location,	 at	 either	 a	
station	or	on	a	grid.	They	also	operate	on	the	
series	 of	 forecasts	 directly,	 rather	 than	 the	
series	of	revisions.	

The	 statistics	 used	 here	 are	 all	 standard	
measures	 that	 are	 well	 documented	 in	 the	
statistics	 literature.	 Further,	 the	 software	
packages	 required	 for	 this	 analysis	 are	
supported	open	source	and	well	documented.	
MODE-TD	 has	 been	 released	with	 the	Model	
Evaluation	 Tools	 (MET)	 software,	 and	 the	
statistical	 tests	 are	 available	 in	 R.	 These	
methods	allow	for	a	trend	in	the	forecasts	but	
detect	trends	in	the	revisions,	which	threshold-
based	 “flip-flop”	 ratios	 do	 not	 handle	
automatically	(though	trends	can	be	manually	
removed	 prior	 to	 calculation	 of	 the	 index).	
Used	 together,	 separate	 tests	 for	 magnitude	
and	randomness	of	the	revisions	provide	more	
detailed	 information	 to	 users	 than	 those	
metrics	that	attempt	to	combine	the	two,	thus	
masking	the	contribution	of	each.		

5. Future	Work	
	

These	metrics	were	 demonstrated	 at	 the	
National	 Weather	 Service	 /	 Weather	
Prediction	Center	 (NWS/WPC)	 to	 assess	 their	
utility.	 	 The	 forecasters	 and	 product	
development	team	thought	 the	metric	would	
be	especially	useful	if	a	user-defined	threshold	
is	applied	to	the	runs	to	identify	changes	that	
would	 impact	 the	 forecaster’s	decisions.	 	The	
suite	 of	 metrics	 will	 be	 included	 in	 the	WPC	



	
	

Winter	 Weather	 Experiment	 in	 January-
February	 2017.	 Additional	 object	 attributes	
will	 be	 incorporated	 in	 future	 tests	 and	
demonstrations.		
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