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Motivation	

This	project	looks	at	the	forecast	impacts	of	a	Geo-HSS	constellation,	using	multiple	metrics.		This	
project	also	looks	at	significance;	can	we	show	that	these	forecast	impacts	are	statistically	significant,	at	
the	95%	level?	

Geo-Hyper	IR	(IASI)	Observations	

Figure	1	shows	simulated	12.8-micron	(window	channel)	brightness	temperatures	for	five	IASI-like	
instruments	simulated	from	the	Goddard	Earth	Observing	System	Model,	Version	5	(GEOS-5)	7-km	
Nature	Run	(G5NR),	and	located	in	geostationary	orbit	at	0°E,	60°E,	140°E,	225°E,	and	285°E	without	
added	errors.		Control	observations,	based	on	instruments	that	were	operational	in	August	2014,	were	
simulated	as	well	(Casey	et	al.	2017b).		The	Global	Forecast	System	(GFS)	operational	3-Dimensional	
Ensemble	Variation	(3DEnVar)	version	from	2015	is	used	in	these	experiments.		More	information	on	the	
OSSE	system	is	also	given	by	Casey	et	al.	(2017b)	and	on	the	simulation,	calibration	and	validation	of	test	
Geo-HSS	observations	by	Zhou	et	al.	(2017).	

Description	of	Experiments	

A	data	drop-out	scenario	is	used	to	identify	the	impact	and	significance	of	Geo-HSS	assimilation.		First,	a	
two-week	(2006080100-2006081418)	spin-up	period	assimilates	all	control	observations,	plus	the	5	
Geo-HSS	(IASI)	observations.		Next,	experiment	perhss	is	run	from	2006081500-2006083118,	
assimilating	the	same	observations	as	the	spin-up	period.		Concurrently	experiment	pernohss	that	
denies	the	5	Geo-HSS	observations	runs	for	the	same	2006081500-2006083118	period.	So	far,	all	
observations	are	error-free.		Explicit	observation	error	biases	and	variances	are	then	calculated	for	all	
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control	instruments	following	Errico	et	al.	(2013)	and	Casey	et	al.	(2017b).		The	explicit	ob	error	
magnitudes	for	IASI_Metop-B	are	then	applied	to	each	Geo-HSS	platform.		Finally,	experiments	errhss	
and	errnohss	are	set	up	similar	to	perhss	and	pernohss,	respectively,	with	errhss	run	from	2006080100-
2006083118	and	errnohss	run	from	2006081500-2006083118.		For	all	experiments,	Global	Spectral	
Model	(GSM)	forecasts	are	run	every	12	hours	at	00Z	and	12Z.	

Many	differences	in	standard	metrics	for	these	experiments	are	small	in	magnitude	and	to	highlight	
differences	that	do	exist	the	specialized	plotting	convention	used	for	many	results	shown	in	this	paper	is	
explained	in	Figure	2.		Experiment	perhss	will	be	shown	in	blue,	pernohss	in	red,	errhss	in	cyan,	and	
errnohss	in	magenta.		Error	bars	denote	95%	confidence	intervals	for	the	metric.		Circles	around	a	given	
value	(blue	arrow)	denote	significant	differences	based	on	a	paired	t-test,	where	a	difference	is	
considered	statistically	significant	if	the	error	bar	from	one	experiment	does	not	contain	the	mean	value	
of	another	experiment	(blue	oval,	comparison	between	errhss	and	errnohss).		If	the	error	bars	overlap	
and	include	the	value	of	another	experiment	(red	circle),	the	difference	is	not	significant.	

Hurricane	Case	Study	

The	first	metric	used	for	assessing	forecast	impact	is	the	impact	on	forecast	tracks	of	AL01,	an	Atlantic	
Basin	TC	that	was	first	identified	on	2006081818,	reached	a	maximum	10-m	wind	speed	of	107	knots	on	
2006082700,	and	made	landfall	in	Labrador,	Newfoundland,	Canada	on	2006083012.		Figure	3	shows	
00Z	forecast	tracks	for	AL01	for	all	four	experiments.		Small	differences	are	noted	in	these	maps,	but	
nothing	stands	out	as	a	major	effect	of	assimilating	Geo-HSS	observations	on	the	track	forecasts	(with	
the	possible	exception	of	greater	variability	noted	in	errnohss).	

Figure	4	shows	the	mean	forecast	track	error	as	a	function	of	forecast	hour,	along	with	confidence	
intervals	(as	described	in	Figure	2)	for	the	comparison	between	(top)	perhss	and	errhss,	and	(bottom)	
pernohss	and	errnohss.		Both	of	these	comparisons	show	nonsignificant	differences,	though	a	visual	
inspection	shows	that	the	impact	of	adding	errors	is	stronger	in	the	no-Geo-HSS	case	than	in	the	Geo-
HSS	case.		As	Figure	5	shows,	this	changes	the	observed	impact	that	Geo-HSS	has	in	the	error-added	
case.		While	Geo-HSS	has	a	mixed	impact	in	the	perfect	case,	with	no	forecast	hour	differences	being	
significant,	it	has	a	clear	positive	impact	in	the	error-added	case	that	is	significant	at	forecast	hours	54-
66.	

Figure	6	is	similar	to	Figure	4,	only	for	mean	maximum-wind	error.		Once	again,	the	no-Geo-HSS	case	
appears	more	sensitive	to	these	added	errors	than	the	with-Geo-HSS	case.		Figure	7,	however,	is	unlike	
Figure	5	in	that	none	of	the	forecast	error	differences	are	considered	statistically	significant,	given	high	
variability	in	maximum-wind	errors	in	the	OSSE	system.	

All	mean	minimum-surface-pressure	errors	are	negative,	as	shown	in	Figure	8;	this	is	likely	due	to	the	
lower	resolution	of	GFS	compared	to	the	7-km	G5NR.		While	the	addition	of	errors	does	not	have	a	
significant	impact	on	the	Geo-HSS	case,	the	no-Geo-HSS	case	with	added	errors	sees	significantly	larger	
(in	magnitude)	minimum-surface-pressure	errors	at	forecast	hours	144-162.		Given	the	large	variability	
at	these	forecast	times,	however,	Figure	9	shows	that	these	forecast	impacts	of	Geo-HSS	are	
insignificant	in	both	cases.	



Overall,	the	addition	of	observation	errors	increases	the	forecast	errors	as	expected,	but	adding	errors	
to	the	control	configuration	has	a	greater	impact	on	hurricane	forecast	errors	than	for	the	Geo-HSS	
configuration.		This	leads	to	different	conclusions	in	the	case	of	hurricane	track	error,	where	the	
differences	are	deemed	not	significant	in	the	perfect-ob	comparisons	but	significant	in	the	error-added	
comparisons.		This	does	not,	however,	change	the	conclusions	with	respect	to	hurricane	intensity	errors	
(both	maximum-wind	and	minimum-surface-pressure	errors)	because	in	these	comparisons	the	case-by-
case	variability	is	large.	

Global-Scale	Comparisons	

The	second	metric	used	for	assessing	forecast	impact	is	global-scale,	using	latitude	bands	around	the	
globe.		This	will	demonstrate	whether	there	are	significant	impacts	from	Geo-HSS	assimilation	on	the	
primary	metrics	used	to	predict	hemispheric	and	tropical	meteorology	on	a	synoptic	scale.		These	
latitude	bands,	along	with	sample	differences	between	the	perhss	and	pernohss	cases,	are	shown	in	
Figure	10.		For	Northern	and	Southern	Hemisphere,	500	hPa	geopotential	height	anomaly	correlation	is	
analyzed,	and	for	the	tropics,	200	hPa	vector	wind	RMSE	is	used.	(Note	Figure	10	shows	scalar	wind	
differences	for	clarity.)	

Figure	11	uses	the	same	plotting	style	described	in	Figure	2,	now	for	Northern	Hemisphere	500	hPa	
Geopotential	Height	Anomaly	Correlation.		In	both	Control	and	Geo-HSS	configurations,	the	error-added	
observations	yield	significantly	lower	AC	scores.		Experiment	errhss	yields	statistically	significant	
differences	from	perhss	for	forecast	hours	0-60	and	132-168,	whereas	errnohss	is	significantly	different	
from	pernohss	for	fewer	forecast	hours	(0-54	and	156-168).		This	leads	to	a	small	difference	in	Geo-HSS	
impact	results	(Figure	12),	where	no	comparison	is	statistically	significant	for	the	perfect-ob	case,	but	
Geo-HSS	significantly	reduces	AC	at	the	analysis	time	(remember	that	these	are	verified	against	the	
nature	run,	not	against	self-analyses,	so	AC	forecast	hour	0	is	not	100%	by	default).			

Figure	13	shows	similar	behavior	in	the	Southern	Hemisphere,	where	error	addition	lowers	AC	scores	
significantly	for	0-102	hr	in	the	Geo-HSS	case	and	0-90	hr	in	the	no-Geo-HSS	case.		As	in	Figure	12,	Figure	
14	shows	a	negative	significant	impact	for	Geo-HSS	in	the	error-added	case,	while	no	significant	
difference	is	noted	for	the	perfect-observation	case.	

The	impact	on	Geo-HSS	observations	compared	to	control	observations	is	clear	in	Figure	15,	which	
shows	RMSE	of	200	hPa	vector	wind	in	the	tropics.		For	the	Geo-HSS	case,	the	error-added	observations	
yield	significantly	higher	RMSE	at	all	forecast	hours.		For	the	no-Geo-HSS	case,	though,	this	increase	in	
RMSE	is	only	significant	at	hours	0-90	and	162-168.		As	such,	Figure	16	shows	that,	while	the	perfect-ob	
case	shows	no	significant	impact	for	Geo-HSS,	the	error-added	case	shows	significant	degradation	
caused	by	Geo-HSS	at	forecast	hours	0-66!	

Unlike	with	the	hurricane	case	study,	the	impact	of	added	error	appears	to	be	greater	when	Geo-HSS	is	
included	compared	to	the	control	(no-Geo-HSS)	case.		As	such,	a	slight	improvement	in	forecast	skill	(for	
perfect	data)	becomes	a	somewhat	negative	forecast	impact	for	error-added	observations.	

Overall	Forecast	Score	



While	these	primary	metrics	are	for	the	most	part	not	statistically	significant,	our	final	metric	tests	
whether	the	combination	of	these	and	other	pressure-level	metrics	into	an	overall	forecast	score	(OFS,	
Boukabara	et	al.	2016)	is	statistically	significant.		In	the	OFS,	an	overall	forecast	quality	is	assessed	based	
on	normalization	of	AC	and	RMSE	statistics	for	multiple	forecast	hours,	verification	hours,	variables,	and	
pressure	levels.		Individual	overall	forecast	scores	𝑂!" 	and	𝑂!"#$ 	are	calculated	as:	
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Note	that	each	normalized	score	within	the	summations	is	in	the	range	[0,1].	An	overall	metric	
combining	these	two,	𝑂!"#$%&'(,	is	calculated	using	the	normalization	scores	for	both	𝑂!" 	and	𝑂!"#$ .		
Only	metrics	that	were	numerically	uncorrelated	 𝑅! < 0.25 	were	used;	this	meant	using	forecasts	for	
HGT,	RH	(RMSE	only),	T,	and	WIND	initialized	every	12	hours,	verified	every	18	hours,	and	calculated	at	
three	pressure	levels	(250,	500	and	850	hPa).	

Figures	17	through	20	show	the	OFS	scores	for	all	four	experiments	calculated	across	the	full	globe	
(Figure	17),	Northern	Hemisphere	(Figure	18),	Southern	Hemisphere	(Figure	19),	and	Tropics	(Figure	20).		
All	four	of	these	figures	show	the	same	relation	among	the	four	experiments.		For	perfect	observations,	
Geo-HSS	has	a	small	but	significant	positive	impact	compared	to	the	no-Geo-HSS	case.		However,	for	
error-added	observations,	Geo-HSS	has	a	clear	negative	impact		

Discussion	

The	addition	of	explicit	ob	errors	does,	in	this	case,	change	the	OSSE	results	for	five	geostationary	Geo-
IASI	satellites.		In	comparison	to	perfect-observation	results,	the	error-added	results	show	a	slightly	
more	positive	impact	for	Geo-HSS	in	the	hurricane	case	study,	but	more	negative	results	for	global	
primary	metrics	and	OFS.		The	fact	positive	results	with	perfect	obs	turn	into	negative	results	with	error-
added	observations	suggests	an	issue	with	the	error-addition	applied	to	at	least	the	Geo-HSS	
instruments,	if	not	some	of	the	control	instruments	as	well.	

One	potential	clue	is	found	in	Figure	3.		AL01,	the	storm	used	in	the	hurricane	study,	is	effectively	what	
could	be	called	a	“fish	storm.”		It	stays	hundreds	of	nautical	miles	away	from	land	until	it	approaches	
Nova	Scotia	and	transitions	into	an	extratropical	storm.		In	going	from	perfect	to	error	added	data,	we	
see	positive	change	in	forecasts	for	this	ocean-only	storm,	but	negative	impacts	when	areas	including	
land	are	included.		This	suggests	that	land	vs.	ocean	differences,	and	how	they	are	applied	to	simulated	
Geo-HSS	observations,	could	be	to	blame.	

For	errhss,	the	same	explicit	ob	bias	and	variance	magnitudes	are	applied	to	the	Geo-HSS	platforms	as	
are	calculated	for	IASI_Metop-B.		If	we	run	an	additional	iteration,	an	“errV2”,	we	would	then	have	
different	bias/variance	magnitudes	added	to	IASI_Metop-B	and	the	Geo-HSS	observations.		Differences	



between	IASI_Metop-B	and	the	Geo-HSS	instruments	for	this	errV2	case	could	explain	the	discrepancy	
for	the	“error	version	1”	(errhss)	analysis/forecast	degradation.	

Figure	21	shows	the	difference	between	explicit	observation	biases	and	variances	for	Metop-B	and	each	
Geo-HSS	instrument	for	oceanic	observations.		These	differences	are	rather	small,	no	more	than	~0.1	K	
for	bias	and	~0.15K	for	variance.		For	land	observations,	however,	Figure	22	shows	much	larger	
differences	for	surface	sensitive	channels,	up	to	~0.8	K	for	bias	and	~1	K	for	variance.		There	are	also	
very	clear	differences	in	the	individual	Geo-HSS	instruments	at	these	wavenumbers,	with	GOES	13	and	
GOES	15	showing	greater	explicit	ob	errors	than	JMA,	ISAT,	and	M10.	

Would	an	additional	separation	by	land	surface	type	for	radiance	explicit	observation	errors	remedy	this	
situation,	yielding	a	control	error-added	dataset	whose	explicit	ob	errors	could	be	applied	to	simulated	
test	radiances	without	encountering	this	perfect	vs.	error-added	result	discrepancy?		Figure	23	tries	to	
answer	this	by	showing	the	Implicit	Observation	Bias	(top)	and	Variance	(bottom)	for	IASI	channel	1271	
(962.5	cm-1)	from	experiment	perhss,	comparing	IASI_Metop-B	implicit	observation	errors	(x-axis)	with	
IASI_G13	implicit	observation	errors	(y-axis).		Each	data	point	represents	a	given	land	surface	type	(9	
total	classifications).		Linear	fit	and	correlation	(R2)	are	provided	as	well.			

Implicit	observation	errors,	rather	than	explicit	observation	errors,	show	what	the	observation	
innovation	mean/variance	are	solely	due	to	potential	errors	in	simulation,	assimilation,	and	differences	
between	the	background	and	the	observation.		By	using	perhss,	we	can	isolate	implicit	observation	
errors,	since	no	explicit	observation	error	is	added.		Channel	1271	is	chosen	because	it	is	a	surface-
sensitive	channel,	and	it	is	associated	with	the	largest	differences	between	Metop-B	and	GOES	13	and	
15	in	Figure	22.		Figure	23	suggests	that	a	separation	by	land	type	may	be	helpful	in	terms	of	variance,	
with	the	individual	implicit	observation	biases/variances	being	moderately	correlated	and	somewhat	
resembling	a	1:1	relation.		For	biases,	however,	this	does	not	appear	to	be	the	case,	with	the	exception	
of	land	type	1	(water),	which	shows	biases	for	both	instruments	of	around	-0.1	K.		For	other	land	types,	
IASI_G13	appears	to	have	identified	biases	around	0.4	K	colder	than	IASI_Metop-B.		(This	could	be	due	
to	differences	in	sun	angle,	as	IASI_Metop-B	passes	over	at	two	set	local	times	each	day,	whereas	
IASI_G13	views	the	same	area	continuously.)		Figure	23	suggests	that	separating	out	explicit	observation	
error	calculation	by	land	type	for	radiances	could	be	helpful	when	testing	additional	radiance	
experiments	in	terms	of	matching	the	observed	variance	of	a	control	experiment,	though	the	observed	
bias	may	need	to	be	monitored	closely.		
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Figure	1:		Simulated	12.8-micron	observations	from	five	Geostationary	Hyper-Spectral	Sounder	(Geo-
HSS)	satellites	seated	at	0°E,	60°E,	140°E,	225°E,	and	285°E.	



	

	

Figure	2:		Explanation	for	plots	used	in	Figures	4-15.		Experiment	perhss	is	shown	in	blue,	pernohss	in	
red,	errhss	in	cyan,	and	errnohss	in	magenta.		Error	bars	denote	95%	confidence	interval.		Circles	around	
a	given	value	(blue	arrow)	denote	significant	differences.		If	the	error	bars	overlap,	but	the	error	bar	
from	one	experiment	does	not	contain	the	value	of	another	instrument	(blue	oval),	the	difference	is	
considered	statistically	significant.		If	the	error	bars	overlap	and	include	the	value	of	another	instrument	
(red	circle),	they	are	not	significant.	

	

	

	

	

	



	

	 	

Figure	3:		G5NR	AL01	00Z	forecasts	for	(top	left)	perhss,	(top	right)	pernohss,	(bottom	left)	errhss,	and	
(bottom	right)	errnohss,	with	best-track	information	included	in	black.	



	

	

Figure	4:		The	effect	of	errors	on	TC	AL01	forecast	track	error,	comparing	the	differences	between	(top)	
experiments	perhss	(blue)		and	errhss	(cyan),	and	(bottom)	experiments	pernohss	(red)		and	errnohss	
(magenta).		Figure	description	given	in	Figure	2.	



	

	

Figure	5:		The	effect	of	adding	Geo-HSS	radiance	observations	on	forecast	track	error.	As	in	Figure	4,	but	
comparing	(top)	perhss	(blue)	and	pernohss	(red),	and	(bottom)	errhss	(cyan)	and	errnohss	(magenta).	



	

	

Figure	6:		The	effect	of	errors	on	TC	AL01	maximum-wind	(intensity)	error.	As	in	Figure	4.	



	

	

Figure	7:		The	effect	of	adding	Geo-HSS	radiance	observations	on	maximum-wind	(intensity)	error.	As	in	
Figure	5.	



	

Figure	8:		The	effect	of	errors	on	TC	AL01	minimum-central-pressure	(intensity)	error.	As	in	Figure	4.	



	

Figure	9:		The	effect	of	adding	Geo-HSS	radiance	observations	on	minimum-central-pressure	(intensity)	
error.	As	in	Figure	5.	



	

Figure	10:		Latitude-band	global	scale	comparison	range	for	Northern	Hemisphere	(20°-80°N,	top),	
Tropics	(20°S-20°N,	middle),	and	Southern	Hemisphere	(80°-20°S,	bottom).		Northern	and	Southern	
Hemisphere	plots	include	contoured	500	hPa	Geopotential	Heights	for	the	Geo-HSS	case	on	2006082300	
(green),	as	well	as	the	difference	(no	Geo-HSS	minus	Geo-HSS,	red/blue	contours).		Red/blue	contours	
on	Tropical	plot	shows	difference	(no	Geo-HSS	minus	Geo-HSS)	between	200	hPa	wind	speed.	



	

Figure	11:		The	effect	of	errors	on	the	Northern	Hemisphere	500	hPa	Geopotential	Height	Anomaly	
Correlation.	As	in	Figure	4.	



	

Figure	12:	The	effect	of	adding	Geo-HSS	radiance	observations	on	Northern	Hemisphere	500	hPa	
Geopotential	Height	Anomaly	Correlation.	As	in	Figure	5.	



	

Figure	13:		The	effect	of	errors	on	the	Southern	Hemisphere	500	hPa	Geopotential	Height	Anomaly	
Correlation.	As	in	Figure	4.	



	

Figure	14:		The	effect	of	adding	Geo-HSS	radiance	observations	on	Southern	Hemisphere	500	hPa	
Geopotential	Height	Anomaly	Correlation.	As	in	Figure	5.	



	

Figure	15:		The	effect	of	errors	on	the	200	hPa	Tropical	Vector	Wind	RMSE.	As	in	Figure	4.	



	

Figure	16:		The	effect	of	adding	Geo-HSS	radiance	observations	on	200	hPa	Tropical	Vector	Wind	RMSE.	
As	in	Figure	5.	



	

Figure	17:		Normalized	overall	forecast	score	(OFS)	for	perhss	(blue),	pernohss	(red),	errhss	(cyan),	and	
errnohss	(purple),	in	terms	of	RMSE	(top),	AC	(middle),	and	combined	(bottom)	for	the	global	domain.		
Black	bars	denote	95%	confidence	interval.	



	

Figure	18:		As	in	Figure	17,	for	the	Northern	Hemisphere.	



	

Figure	19:		As	in	Figure	17,	for	the	Southern	Hemisphere.	



	

Figure	20:		As	in	Figure	17,	for	the	Tropics.	



	

Figure	21:		Difference	between	errV2	explicit	ob	biases	(top)	and	variances	(bottom)	for	Metop-B	versus	
channel	for	each	Geo-HSS	satellite	for	oceanic	observations.	
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Figure	22:		As	in	Figure	21,	for	land	observations.	
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Figure	23:		Implicit	Observation	Bias	(top)	and	Variance	(bottom)	for	IASI	channel	1271	(962.5	cm-1)	from	
experiment	perhss,	comparing	IASI_Metop-B	implicit	observation	errors	(x-axis)	with	IASI_G13	implicit	
observation	errors	(y-axis).		Each	data	point	represents	a	given	land	surface	type	(9	total	classifications).		
Linear	fit	and	correlation	(R2)	are	provided	as	well.	
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