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ABSTRACT: 
To date, the literature on the use of lightning 
information to distinguish severe thunderstorms 
from ordinary storms has focused primarily on the 
“lightning jump”, the rapid increase in total flash 
rate that is generally associated with a 
strengthening of the storm. The lightning jump, 
however, ignores other characteristics such as 
the proportions of cloud and cloud-to-ground (CG) 
flashes within the total flash rate and the 
proportions of positive- and negative-polarity 
flashes, CG strokes, and individual cloud pulses 
within the flashes. In this work, we present results 
from an analysis of more than 1000 thunderstorm 
cells sampled from most of the continental U.S. 
by the U.S. National Lightning Detection Network 
(NLDN) on a number of days in 2015 and 2016 
when both severe and non-severe thunderstorms 
occurred. The sample was chosen to represent 
the real proportion of severe thunderstorms, 
generally considered to be around 10% or less of 
all thunderstorms in the U.S. All of these storms 
were observed by the NLDN in its post-2013 
upgraded state, when its cloud flash detection 
efficiency was between 40-60% and its CG flash 
detection efficiency was more than 95%, and 
thus, the NLDN served as a continental-scale 
total lightning network. In this study, the severe 
storms were identified on the basis of proximity in 
space and time to severe storm reports compiled 
by the NOAA Storm Prediction Center. The 
objective of the study is a preliminary assessment 
of whether the inclusion of parameters such as 
cloud flash fraction and separate rates of positive 
and negative cloud and CG flashes, strokes, and 
pulses provide any additional value on top of the 
total flash rate in terms of distinguishing between 
severe and non-severe storms in a representative 
sample of all thunderstorms from around the U.S. 
 
1. Introduction 
In November 2016, the U.S. launched the first 
geostationary satellite ever to bear an optical 
lightning imaging instrument, known as the 
Geostationary Lightning Mapper (GLM). As 
described in Goodman et al. (2013), the eventual 

GLMs on both GOES-E and GOES-W satellites 
will cover most of the western hemisphere 
between approximately 50° S latitude and 50° N 
latitude, with a pixel size (and thus, spatial 
resolution) of 8 km at the equator and 14 km at 
the edges. These instruments are expected to 
provide a spatially uniform total lightning flash 
detection efficiency (DE) between 70-90%. In this 
paper, the term “total lightning” refers to the 
combination of cloud and cloud-to-ground 
flashes. The combination of high DE of total 
lightning and wide area of coverage is the primary 
benefit of space-based optical monitoring of 
lightning. Although methods have been 
developed to estimate the fraction of cloud-to-
ground (CG) flashes and flash types from a large 
sample of optically-detected flashes (e.g. Koshak 
and Solakiewicz, 2015), the GLM cannot uniquely 
identify lightning flash type. Optical systems also 
cannot identify the polarity, or direction of vertical 
current flow, of the detected discharges. 
 
The high total lightning DE of space-borne optical 
sensors, coupled with prior literature indicating 
that CG lightning data alone is poorly related to 
storm intensity and severity (see literature review 
provided by Schultz et al. 2011), have led to an 
emphasis on rapid increases in total flash rate as 
indicators of storm severity. These rapid 
increases in total flash rate were originally called 
“lightning jumps” by Williams et al. (1999), and 
subsequently, a substantial body of literature has 
developed around how effectively these jumps 
can be used to differentiate between ordinary 
thunderstorms and those storms that produce 
damaging winds, large hail, or tornadoes, 
collectively defined, at least in the U.S., as 
“severe” thunderstorms. 
 
Most quantitative lightning jump algorithms are 
related in some way to that of Gatlin and 
Goodman (2010). When 2-minute intervals were 
used, as in this study, Gatlin and Goodman 
defined the “lightning jump” as any 2-minute 
interval in which the rate of change of total flash 
rate was at least two standard deviations above a 
weighted, running average of the rate of change 
during the preceding 10 minutes. It should be 
noted that many variations on the lightning jump 
algorithm exist: Gatlin and Goodman described 
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the configurable options in their appendix, with 
their preferred configuration (described in their 
section 4, figure 7) involving a weighted 
smoothing process. Schultz et al. (2011) adopted 
a different variation, without smoothing but with 
the addition of a 10 flash/minute minimum total 
flash rate requirement. 
 
1.1 Prior studies of lightning jumps 
In the absence of continuous observations of total 
lightning from space-based sensors, prior studies 
have investigated the efficacy of the lightning 
jump using data from ground-based total lightning 
detection systems, primarily Lightning Mapping 
Arrays (LMAs; Thomas et al. 2004). The following 
literature review summarizes the results from 
these prior studies. 
 
Gatlin and Goodman examined a sample of 20 
spring thunderstorms in the vicinity of Huntsville, 
Alabama, of which 19 were severe storms and 
only one was non-severe. Gatlin and Goodman 
matched Severe Storm Reports (hereafter SSRs) 
from the database maintained by the NOAA 
Storm Prediction Center with thunderstorm cells 
identified from radar and lightning data. They then 
applied the lightning jump algorithm to the LMA 
observations from these storms. They used a 
standard contingency table event-based 
verification methodology, counting a “hit” as any 
SSR having a lightning jump during the 30-minute 
period preceding the SSR. They found that 90% 
of the SSRs had a lightning jump during their 
respective 30 minute periods, with a false alarm 
ratio (FAR) of 40% (26 out of 65 jumps). False 
alarms in their study were defined as lightning 
jumps that did not have a corresponding SSR 
during a 30-minute time window beginning at the 
time of the lightning jump. 
 
Schultz et al. (2011) analyzed 711 thunderstorms 
in four areas of the U.S. where LMA observations 
were available in order to have a more 
geographically diverse sample. Of their 711 
storms, 255 were severe (35.9%) and the other 
456 were non-severe (64.1%). Different from 
Gatlin and Goodman, Schultz et al. did not apply 
a weighted smoothing to the rates of change of 
flash rate but they did add the requirement that 
the total flash rate be at least 10 flashes/minute in 
order to remove spurious lightning jumps due to 
statistical noise at low flash rates. They also 
extended the time window relating lightning jumps 
and SSRs to 45 minutes, rather than 30 minutes 
as used by Gatlin and Goodman. With these 
modifications, Schultz et al. observed an FAR of 

36%. A subset of the false alarms was found to 
have occurred shortly after another lightning jump 
that was correlated with an SSR. When Schultz et 
al. removed such false alarms, the effective net 
FAR was reduced to 22%. 
 
Rudlosky and Fuelberg (2013) had an even larger 
sample, 1252 storms, of which 384 (30.7%) were 
severe and 868 (69.3%) were non-severe. All of 
these storms were within 150 km of a single LMA 
near Washington, DC. They applied the lightning 
jump algorithm in the same way as Schultz et al. 
(2011) (although they also tested it without the 10 
flash/min minimum rate threshold). The 
contingency table values (POD, FAR) were not 
presented in their study. However, with the 10 
flash/min minimum, they found that 53.7% of the 
non-severe thunderstorms contained lightning 
jumps, and when the minimum flash rate 
requirement was switched off, that percentage 
increased to 76.4% of the non-severe 
thunderstorms. 
 
Metzger (2010) opted not to use the Gatlin-like 
algorithm and instead defined a lightning jump as 
any sustained increase in the total flash rate of at 
least 5 flashes/minute over a one-minute period 
and required that this rate of change be sustained 
over at least 3 minutes. He analyzed 34 storms in 
Arizona and Texas, 9 of which were non-severe, 
such that the proportions of severe and non-
severe storms in the sample were 73.5% and 
26.5%. A total of 73 lightning jumps were found. 
All nine of the non-severe storms had at least one 
lightning jump, and 16 of the 73 jumps occurred 
somewhere in the non-severe storm sample. 
Metzger also noted that a number of lightning 
jumps in the severe storms were not correlated 
with the actual production of severe weather, and 
he noted that this led to a “high” FAR. The FAR 
value was not given outright, but based on the 
number of reported hits (39) and the number of 
reported lightning jumps (73), we can infer a FAR 
value of 46.6%. 
 
The preceding studies used radar data to define 
thunderstorm cells, and both the lightning data 
and the SSRs were assigned to the radar-defined 
storms. Miller et al. (2015), by contrast, used a 
lightning-based clustering method rather than 
radar to examine 470 storm clusters, some of 
which were multicellular. Importantly, only 53 of 
these storms (11.3%) were severe, while the 
remaining 417 storms (88.7%) were non-severe. 
They applied the Gatlin/Schultz-like lightning 
jump algorithm to the lightning-defined clusters. 
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They found that the lightning jumps yielded a POD 
of severe weather events that was comparable to 
that of Schultz et al. (2011) but that the FAR was 
significantly higher: Over all storms (the single-
cell and multi/super-cell categories given by Miller 
et al.), the FAR was 87.9% rather than 36%. 
 
Similar to Miller et al. (2015), lightning data alone 
were also used by Farnell et al. (2016) to identify 
storm cells. They applied the 2σ lightning jump 
algorithm of Schultz et al. (2009), which is the 
same as that applied by Schultz et al (2011) and 
the same as that used in the present study. 
However, all of their storms were taken from days 
with severe weather in Catalonia (NE Spain), and 
given the small size of Catalonia relative to the 
continental U.S., that choice yielded a large 
proportion of severe storms: Of the 179 storms in 
their sample, 108 (60%) produced severe 
weather, primarily large hail, while the remaining 
71 (40%) were non-severe. The FAR was only 
10%, but it is noteworthy that radar data were 
used to augment ground-based severe storm 
reports. 
 
1.2 Objectives of the present study 
Space-borne optical sensors and ground-based 
lightning detection networks are expected to 
provide complementary information. The former 
provide high total lightning DE over very large 
areas of the world. The latter provide high CG 
flash DE, with lower total lightning DE, but they 
also contribute polarity, lightning type 
classification at the individual event level (CG 
stroke or cloud pulse), and peak currents of CG 
strokes (and a rough equivalent in the case of 
cloud pulses). In the context of lightning jumps, 
which can produce high FARs as just shown, the 
question arises regarding the extent to which 
information derived from ground-based lightning 
observations, particularly polarity and lightning 
type classification, might be able to enhance the 
lightning jump observations derived from total 
flash rate observations. 
 
In addition to that primary question, we also seek 
in this study to include a representative sample of 
severe and non-severe thunderstorms with 
geographically diverse sampling. According to the 
U.S. National Weather Service, only about 10% of 
all thunderstorms in the U.S. produce severe 
weather (see http://www.nws.noaa.gov/ 
om/severeweather/resources/ttl6-10.pdf). The 
current study includes 3350 storms, of which 
6.5% are severe, as described in more detail in 
the Methods section. These 3350 storms were 

taken from eight different storm days in 2015 and 
2016, and they occurred all the way from eastern 
Washington and Oregon through the inter-
mountain west, Great Plains, Great Lakes, as well 
as all of the southern U.S. and up the east coast 
from north-central Florida to approximately New 
York City. 
 
It is important to note that the present study is 
limited just to lightning information. In practice, 
multiple sources of information are used 
operationally, including satellite, radar, and 
numerical weather prediction data. The combined 
effects of these, with or without lightning data, on 
the ability to identify storms that are likely to 
become severe, are discussed by Cintineo et al. 
(2014) and Bedka et al. (2015). This also includes 
the possibility of extending the lead times of 
severe weather warnings via the use of combined 
data sets. Such improvements fall outside the 
scope of this paper, given its exclusive use of 
lightning data and comparisons with prior 
literature where lightning was the sole, or at least 
major, focus. 
 
2. Methods 
2.1 General 
All data in this study are taken from the U.S. 
National Lightning Detection Network (NLDN) and 
include all CG strokes and cloud pulses. All case 
studies are from 2015 and 2016, so that they 
include the roughly 50% cloud flash DE described 
by Murphy and Nag (2015). The individual CG 
strokes and cloud pulses are grouped into flashes 
using the algorithm described in Murphy and Nag 
(2015). Data from both the flash level and the 
individual strokes / cloud pulses are used. Any 
flash that contains at least one CG stroke is 
defined as a CG flash, regardless of how many 
cloud pulses it also contains. Any flash that 
includes only cloud pulses is defined here as a 
pure IC flash. 
 
In contrast to space-borne optical sensors, 
ground-based networks such as the NLDN have 
lower total lightning DE due principally to their 
more limited cloud lightning DE. After a full 
upgrade in 2013, the cloud flash DE of the NLDN 
is on the order of 50% (Murphy and Nag, 2015). 
The cloud-to-ground (CG) flash DE of the NLDN 
is at least 95% over the continental U.S. following 
the 2013 upgrade. The location accuracy of CG 
strokes is also very good, with a median value of 
150-250 m (Nag et al. 2014). Importantly, the 
NLDN and other ground-based lightning locating 
systems also provide the polarity and estimated 

http://www.nws.noaa.gov/%20om/severeweather/resources/ttl6-10.pdf
http://www.nws.noaa.gov/%20om/severeweather/resources/ttl6-10.pdf
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peak current of every CG stroke and cloud pulse, 
and the NLDN is able to distinguish between CG 
strokes and cloud pulses with an overall 
classification accuracy of 90% or better. 
 
2.2 Thunderstorm tracking 
Thunderstorms were identified using an algorithm 
described in Murphy (2016). This algorithm 
assigns lightning flashes to storm objects on a 
quasi-interrupt-driven basis with short, 
configurable update intervals, nominally set to 60 
seconds. At each update interval, new lightning 
flashes are “attracted” to nearby thunderstorm 
objects on the basis of the number of flashes 
already in those objects and the distance of the 
object centroids to each new lightning flash. That 
distance is subject to a maximum limit, such that 
any new flashes that are not sufficiently close to 
any existing storm object become the initial 
flashes in new storm objects. Older lightning 
flashes gradually age out of thunderstorm objects 
via a smooth, age-dependent weighting function. 
The same age-dependent weighting function is 
also used to determine the influence of each flash 
on the centroid position of the storm object itself, 
in order to produce storm tracks that are as 
smooth as possible. Ultimately, in this study, the 
positions of storm object centroids and the 
various information about their lightning contents 
are made available every two minutes, to be 
consistent with the use of the 2σ lightning jump 
algorithm in Schultz et al. (2009, 2011) and Gatlin 
and Goodman (2010). The lightning information 
that is provided at these two-minute update 
intervals includes the total flash count, the 
numbers of positive and negative CG flashes, the 
numbers of positive and negative pure IC flashes, 
the numbers of positive and negative CG strokes, 
the numbers of positive and negative cloud 
pulses, and the numbers of positive and negative 
cloud pulses that were produced exclusively by 
pure IC flashes. Various ratios of these quantities 
are also calculated as needed. 
 
The above-mentioned storm tracking algorithm 
also picks up small thunderstorms that produce 
very little lightning and have no realistic 
probability of association with SSRs, and 
occasionally, it also picks up a small subdivision 
of a larger storm. Thus, we initially filter the output 
from the storm tracking algorithm to require that 
the storm have a total lifetime of at least 20 
minutes and that it produce at least 20 flashes 
over its lifetime.  
 
 

2.3 Matching severe storm reports to 
thunderstorms 
Severe Storm Reports (SSRs) are taken from the 
daily filtered CSV files that are compiled and 
maintained by the NOAA Storm Prediction Center 
(SPC). In the U.S., “severe storms” are defined as 
those that produce winds of 93 km/hr or greater, 
hail of diameter 2.54 cm or greater, or a tornado, 
or any combination of those three. Much has been 
written about the use and limitations of SSRs (e.g. 
Carey and Rutledge 2003 and references therein; 
Witt et al., 1998; Trapp et al. 2006). The National 
Weather Service’s principal interest in SSRs is to 
verify severe weather warnings, and to this end, a 
single observation of a severe weather event is 
sufficient to verify a single warning. If multiple 
thunderstorms pass nearly simultaneously over 
an area that has a severe weather warning, there 
may or may not be an SSR that matches each 
storm, even though more than one of the storms 
may have generated a severe event. Multiple 
SSRs per warning are not precluded in the SSR 
database, but they are not necessarily actively 
sought out either; some National Weather Service 
forecast offices have been shown by Weiss et al. 
(2002) to be more active than others at recording 
SSRs, leading to geographic inhomogeneity in 
the SSR database. Despite the limitations, the 
SPC database of SSRs is the most 
comprehensive source of information about 
severe weather over the U.S., and it is used in this 
study. 
 
To associate each SSR with a thunderstorm 
track, if possible, we start by looking at all 
thunderstorm track points that are within 50 km of 
the SSR and that occurred at or before the time of 
the SSR. The motivation behind the “at or before” 
time matching is two-fold: (1) An observer may 
report a severe event late. Prior studies of SSRs 
mentioned by Witt et al. (1998) noted a late bias 
in tornado reports, and one may reasonably 
assume that this extends to hail and wind SSRs 
as well, given that any event necessarily has to 
occur before it can be reported. (2) Developments 
within the thunderstorm that lead to severe 
weather occur primarily aloft and usually happen 
before the severe weather event manifests itself 
on the ground. To name just one example, a 
hailstone that just reaches the “severe” limit of 
2.54 cm diameter requires approximately 14 
minutes to fall from an altitude of 10 km to sea 
level based simply on its near-sea level terminal 
velocity. The electrification process and its 
evolution likewise occur aloft, and thus it is 
reasonable to assume some lead time between 
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changes in lightning activity and severe weather 
at ground level. 
 
Once the foregoing matching step is complete, if 
multiple storm tracks are found within the spatial 
constraint of 50 km just mentioned, then we prefer 
to take the closest track point, provided that the 
SSR is in the down-shear direction with respect to 
the storm track. That down-shear condition is also 
consistent with the “at or before” time matching 
condition: It attempts to take into account the 
natural “lead distance” associated with the lead 
time between the evolution of the thunderstorm 
and electrification process aloft and the 
manifestation of severe weather on the ground. 
The down-shear condition is measured by taking 
the dot product between two unit vectors: (a) one 
connecting a candidate matching time point on 
the storm track to the SSR, and (b) the storm’s 
velocity vector at the same time point. If that dot 
product is 0.5 or greater, then the SSR is down-
shear of the candidate storm track time point to 
within 60 degrees, and this is regarded as a 
preferable match. The 60-degree restriction is 
waived if the SSR is within 10 km of its potential 
associated track point from the storm. Figure 1 
shows an example of several matches, some 
including the 60-degree requirement and some in 
which it was waived, in a long-track storm in 
eastern Iowa (the Mississippi River is seen toward 
the right-hand side of the image). The storm track 
is given by the circle symbols (our internal storm 
ID number is also plotted alongside but is difficult 
to read and not relevant here). The SSRs are 
shown by the triangle symbols and are connected 
to the best-match upstream storm track point by 
thin lines. The color coding indicates the 

progression of time along the storm track and is 
not relevant here. Although there are track points 
at various points in the storm’s life cycle that are 
physically closer to some of the SSRs, particularly 
the first, that SSR is assigned to an up-shear track 
point that is considered to be more representative 
of the evolution of the storm aloft that ultimately 
led to the severe weather event itself. 
 
Given the previously mentioned limitations of 
SSRs, there are times when only a single SSR is 
matched to a particular storm. In order to focus on 
storms that are truly severe, we require at least 
two SSR matches to consider a storm to be in the 
“severe” population. Any storm with 0-1 SSR 
matches is taken as part of the non-severe storm 
population. The result is that 217 of our 3350 
storms, or about 6.5%, are considered “severe”, 
and the remaining 93.5% are regarded as non-
severe. In section 3 (Lightning Jump Results) 
below, we also present the results when 1 or more 
SSR is allowed to define a storm as “severe”. 
 
2.4 Selected case studies 
Each of the case studies crosses 00:00 UTC, as 
expected given the optimal time of thunderstorm 
activity in North America. The specific case study 
dates and the populations of non-severe and 
severe storms are given in Table 1. 
 
Table 1. Summary of case studies 

Dates Total 
storms 

Severe Non-
severe 

2015-03-
31/04-01 

180 33 147 

2015-04-
08/09 

415 44 371 

2015-04-
09/10 

477 60 417 

2015-04-
24/25 

386 22 364 

2015-05-
31/06-01 

362 13 349 

2015-06-
01/02 

540 18 522 

2015-06-
02/03 

402 17 385 

2016-03-
08/09 

588 10 578 

Total 3350 217 3133 

 
2.5 Lightning jumps and verification 
The lightning jump analysis in this study uses the 
same configuration of the 2σ lightning jump 
algorithm as Schultz et al. (2011). This includes 

Figure 1. Association of SSRs (triangles) with a 
storm track based on lightning data (circles). 
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the minimum flash rate of 10 flashes/minute and 
the convention of consolidating those lightning 
jumps that are separated by 6 minutes or less. 
Although the NLDN has approximately 50% cloud 
flash DE, we do not alter the lightning jump 
configuration on the basis of DE. If anything, the 
use of the original lightning jump definition on a 
data set that has lower total lightning DE ought to 
be overly restrictive and result in fewer lightning 
jumps than might be expected if the data set were 
from an LMA or other total lightning mapping 
system. 
 
Our verification is somewhat stricter than that of 
Schultz et al. (2011) in that we start a 30-minute 
warning window, rather than 45 minutes, when a 
lightning jump starts. However, we have the 
capability of changing that time window to 45 
minutes or any other value (see section 3, 
Lightning Jump Results). We likewise adopt the 
convention of Schultz et al. (2011) of counting as 
a “hit” only the earlier lightning jump if more than 
one jump occurs within 30 minutes prior to a 
severe weather event. Likewise, in the false alarm 
count, we allow the option of either including or 
excluding those jumps that are “false alarms” 
simply by virtue of the fact that a prior jump 
initiated a warning at an earlier time. 
 
We use the standard contingency table to verify, 
but rather than computing the critical success 
index (CSI), however, we prefer to compute the 
equitable threat score (ETS) instead. The latter 
statistic is generally considered to be more robust 
in verifying rare events, such as severe weather, 
than CSI, but it also requires an estimate of the 
correct negative count in the contingency table. 
Our method of estimating this is described next. 
 
The estimation of the correct negative count, to 
round out the contingency table and thus enable 
the calculation of ETS, first involves defining an 
“event time window”. In the case of a lightning 
jump-initiated warning, the event time window is 
the 30-minute time window that begins with the 
jump itself. In the case of an SSR, the “event” only 
has one time stamp as given in the SPC 
database. However, in reality, almost all severe 
weather occurrences have some time duration, 
and the receipt of an actual report constitutes only 
one point in time in the real lifetime of the severe 
weather occurrence. In the absence of actual data 
on this, we open a 30-minute window to 
correspond to each SSR as well. However, to be 
consistent with the uncertainty in SSR times and 
to be consistent with trying to focus on what 

occurs aloft prior to the manifestation of severe 
weather on the ground, we define the “SSR time 
window” to start 20 minutes prior to the SSR time 
stamp and end 10 minutes after. Having thus 
defined what constitutes “events”, both jumps and 
SSRs, we then simply count the total number of 
events and the total time spent in events. In the 
case where multiple events overlap in time, e.g. 
multiple lightning jump time windows overlap 
and/or at least one lightning jump window 
overlaps an observed SSR window, we do not 
over-count the time. That is, each two-minute time 
interval that contains one or more lightning jump 
and/or SSR events is simply counted once as a 
time interval that belongs to the “event” 
population. With the total number of events and 
the total time spent in events thus defined, we can 
determine the average time per event. Next, the 
total number of two-minute time points that are not 
associated with any “event” is counted as the 
“non-event” time. (Of course, in doing this, we 
take into account whether or not the non-severe 
storm population includes storms that have only 
one SSR match – hence, some SSR matches can 
end up in the “non-event” count.) Lastly, the total 
“non-event” time is divided by the average time 
per event to arrive at a count of “non-events”, 
which becomes the correct negative count in the 
contingency table. 
 
2.6 Down-sampling of false alarms 
In the literature review in section 1.1 and our 
description of our own storm sample, we have 
deliberately made note of the portion of non-
severe storms among the total storm sample. We 
regard this as a critical piece of information and 
one that must be normalized properly between 
our study and the prior literature in order to make 
proper sense of the results. In addition to 
presenting results from our full sample of 3350 
storms, we have also down-sampled both the 
non-severe storm count and a best estimate of the 
number of false alarm jumps associated with non-
severe storms to match each of the studies cited 
in section 1.1 except Rudlosky and Fuelberg 
(2013) because they did not provide contingency 
table statistics. 
 
The first step in the down-sampling process, 
reducing the number of non-severe storms to 
match the proportions of non-severe storms from 
the prior studies cited above, is straightforward: 
To do this, we simply fix the number of severe 
storms at 217, the number in the current study, 
and compute a number of non-severe storms, N, 
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to match any desired proportion, p, of non-severe 
storms, according to the following: 

𝑁 = 𝑆
𝑝

1 − 𝑝
 

where S is the number of severe storms (217).  
 
The second step, scaling the number of jumps 
associated with non-severe storms, is admittedly 
subjective because that information is rarely if 
ever actually reported in the literature. To 
estimate it, however, we note that our sample of 
3133 non-severe storms included 1159 storms 
that had one or more lightning jumps, with a total 
of 1858 jumps. In other words, 37% of our non-
severe storms had at least one jump, but an 
average of 1.6 jumps occurred per non-severe 
storm that had jumps (that is, 1858 jumps / 1159 
storms). With this information, it is possible to 
estimate the number of non-severe storms that 
would have had jumps after we down-sample the 
population of non-severe storms, and to estimate 
the number of jumps that would have been 
associated with those. That information, at last, 
permits us to normalize our results to the 
particular proportions of non-severe storms 
reported in each of the prior studies cited above. 
 
2.7 Best use of ground-based lightning network 
data 
Lastly, we have the question of using additional 
information derivable from ground-based network 
data to improve upon the performance of the 
lightning jump method alone. We have examined 
a large number of such enhancements, and in 
addition, we have also examined how each of 
those would perform on its own if lightning jumps 
were not taken into consideration at all. In the end, 
we found that the highest ETS value was obtained 
by filtering lightning jumps with a set of three non-
jump criteria:  

(a) total flash rate is at least 30 per 2-min 
interval and the pure IC flash fraction is at 
least 0.5 and greater than or equal to a 
threshold that decreases linearly with 
total flash rate, or 

(b) the rate of negative-polarity IC pulses due 
to pure IC flashes is greater than or equal 
to a second threshold that also decreases 
linearly with increasing total flash rate, or 

(c) the total flash rate is at least 55 per 2-
minute interval 

Note that the latter criterion is based on total flash 
rate itself, not the rate of change of total flash rate, 
which is the basis of the lightning jump. 
 

The motives behind the choice of these three 
criteria are as follows 

(a) in severe storms, cloud flashes are 
expected to dominate over CG flashes 
more so than in ordinary storms, and 
therefore, the fraction of pure IC flashes 
among total flashes should be high 
around the time when storms become 
severe 

(b) due to turbulent disruption of the normal, 
relatively orderly, layered charge 
structure of ordinary storms (Bruning and 
MacGorman, 2013), and possibly due to 
the rapid rearrangement of charge by the 
high flash rate itself, severe storms might 
be expected to have a disorderly 
arrangement of charge, with small 
pockets of positive and negative charge 
rather than more orderly layers of charge. 
In ordinary convection, with a mid-level 
negative and upper-level positive charge 
layer, the majority of cloud pulses in pure 
IC flashes should be of positive polarity. 
However, in a disorderly charge 
structure, a larger proportion of cloud 
pulses in pure IC flashes is expected to 
be negative. Note that this does not apply 
to the cloud pulses associated with CG 
flashes; many, if not most, of those are 
due to the preliminary breakdown 
process and have the same polarity as 
the return strokes, which may not be 
relevant to the question of storm severity 

(c) overall, the total flash rate is generally 
high in severe storms 

 
3. Lightning Jump Results 
The contingency table from our sample of 3350 
storms, with the Schultz et al. (2011) lightning 
jump configuration applied to them, is presented 
in Table 2A, along with the probability of detection 
(POD), false alarm ratio (FAR), and equitable 
threat score (ETS) derived from it. As noted in the 
Methods section, we opened a 30-minute warning 
time window, as in Gatlin and Goodman (2010), 
when a lightning jump occurred. A total of 743 
SSRs occurred in the 217 storms in our severe 
storm population. Almost half of those had a 
lightning jump in the 30 minutes leading up to the 
SSR time, giving a POD of 0.499. There were 
2144 false alarm lightning jumps. Of these, 1858 
(86.7%) occurred in the set of non-severe storms, 
and 286 (13.3%) occurred in the severe storm 
population. Of the 2144 false alarms, 444 were 
“false alarms” due to the fact that a warning was 
already in effect due to a prior jump (see Schultz 
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et al. (2011) verification method), and therefore, 
our FAR remains roughly the same even if we 
take those out, as Schultz et al. did: 0.821 vs 
0.852. 
 
Table 2A. Contingency table, standard 2σ 
lightning jump algorithm, all 3350 storms, using a 
30-minute warning time window. 

  FORECASTS 

  YES NO 

O
B

S
 

Y
E

S
 

371 372 

N
O

 

2144 15329 

    

  POD 0.499 

  FAR 0.852 

  ETS 0.096 

 
Our POD of 0.499 should theoretically be closest 
to that of Gatlin and Goodman (2010) because we 
both opened 30-minute warning time windows 
with the lightning jumps, but Gatlin and Goodman 
actually had a substantially higher POD of 0.74. 
The fact that our POD is much lower might be due 
simply to the much greater geographic diversity of 
storms and variety of severe storm conditions that 
we sampled in this study. The remaining studies 
cited in section 1 are expected to have rather 
different POD values because they either used 
different warning time windows or no time window 
that was explicitly called out. Specifically, Schultz 
et al. (2011) and Miller et al. (2015) both applied 
45-minute windows, whereas Metzger (2010) and 
Farnell et al. (2016) did not specifically mention 
any time window. Tables 2B and 2C below show 
the results that we get from our storm sample if  
 
Table 2B. Contingency table, standard 2σ 
lightning jump algorithm, all 3350 storms, using a 
45-minute warning time window. 

  FORECASTS 

  YES NO 

O
B

S
 

Y
E

S
 

445 298 

N
O

 

2125 10770 

    

  POD 0.599 

  FAR 0.827 

  ETS 0.112 

 

Table 2C. Contingency table, standard 2σ 
lightning jump algorithm, all 3350 storms, using a 
120-minute warning time window. 

  FORECASTS 

  YES NO 

O
B

S
 

Y
E

S
 

531 212 

N
O

 

2158 5804 

    

  POD 0.715 

  FAR 0.803 

  ETS 0.113 

 
we change the warning time window to 45 
minutes (Tab. 2B) or effectively remove it 
completely by raising it to 120 minutes (Tab. 2C). 
 
Tables 2A-2C show that, as the warning time 
window is gradually raised, the POD 
progressively increases. The number of correct 
negatives progressively decreases because the 
total time per event increases (see subsection 2.5 
of Methods). The number of false alarms, 
however, remains relatively constant, decreasing 
slightly at the 45-minute time window and then 
increasing again slightly with the 120-minute 
window. Mostly, this is because the 1858 false 
alarms that occurred in non-severe storms 
continue to be false alarms regardless of the 
warning time window. The remaining, and much 
smaller, portion of false alarms in the severe 
storm population redistribute themselves 
somewhat as the warning time window changes. 
The initial change of that window from 30 to 45 
minutes causes some false alarms to become 
hits. The latter increase of that window, however, 
results in a bigger group of lightning jumps that 
occur while a warning window due to an earlier 
jump is already in effect. By default, jumps that 
occur while a warning is already in effect are 
counted as false alarms, and thus, the count of 
false alarms increases again, unless the repeat 
warning cases are removed. Even when repeat 
warnings are removed, the net effect is still that 
the FAR is dominated by the false alarms that 
occurred in non-severe storms, and the FAR 
decreases relatively little as the warning time 
window is increased: When repeat-warning “false 
alarms” are removed, the FARs are 0.774 with the 
45-minute warning window and 0.710 with the 
120-minute window. 
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If we redefine a “severe” storm as having any 
SSR, rather than a minimum of two, then the 
number of false alarms due to non-severe storms 
drops from 1858 to 1496, while the number of hits 
increases from 371 (Table 2A) to 482. The FAR, 
therefore, becomes 0.808. However, of the false 
alarms, only 364 are due to repeat warnings. 
Thus, the FAR is still dominated by jumps 
occurring primarily in the non-severe storm 
population, and the exclusion of repeat-warning 
“false alarms” changes the FAR relatively little, to 
0.776. 
 
Thus, the preceding results indicate that the 
representation of non-severe storms in the 
sample is critical. All of the prior literature cited in 
section 1, with the exception of Miller et al. (2015), 

had a substantially lower proportion of non-severe 
storms than the 93.5% in our sample of 3350 
storms or the 90% proportion indicated by the 
National Weather Service. Therefore, as 
described in section 2.6, we have attempted to 
down-sample the non-severe storm population, 
and the corresponding number of jumps due to 
non-severe storms, from our sample to match the 
proportions reported in the prior literature. In this 
analysis, we ignore the small number of repeat 
warnings (41 when the warning time window is 30 
minutes) because, as already shown above, they 
have little effect on the FAR value. Table 3 shows 
the results of this down-sampling, and the 
discussion of this starts in the next paragraph. 
 

 
Table 3. False alarm ratio (FAR) down-sampled from our data set and compared with original FARs 

Reference Warning 
time 
window 
(min) 

Hits based 
on our 
sample 

Proportion 
non-svr 
storms 

Non-svr 
stms based 
on our 
sample 

Non-svr FA 
jumps 
based on 
our sample 

FAR as 
reported 

FAR down-
sampled, 
our data 

Gatlin 30 371 0.050 11 6 0.40 0.44 

Metzger not 
reported 

531 0.265 78 46 0.47 0.40 

Farnell not 
reported 

531 0.400 145 87 0.10 0.42 

Schultz 45 445 0.641 387 229 0.36 0.53 

Miller 45 445 0.887 1703 1010 0.88 0.74 

 

 
As discussed in section 2.6, the FAR down-
sampling effort is based on down-sampling the 
number of non-severe storms from our sample, 
and the corresponding number of lightning jumps 
due to non-severe storms. We keep our original 
population of severe storms and its associated 
lightning jumps the same. The distribution of 
those jumps between hits and false alarms 
depends on the warning time window, which is 
why that value, and the corresponding number of 
hits, are given in the second and third columns of 
Table 3. The middle three columns of Table 3 
show (a) the proportion of non-severe storms in 
the original literature citation, (b) the number of 
non-severe storms that our sample would have in 
order to match that proportion, and (c) the number 
of false alarm lightning jumps that our sample 
would have, given the new number of non-severe 
storms. The final two columns of Table 3 show the 
FAR as originally reported in the literature and the 
FAR of our storm sample following the down-
sampling. 

 
The down-sampled FARs from our data sample 
are within about ±0.15 of the originally reported 
FARs in all cases except Farnell et al. (2016). 
Those authors reported that they used radar 
information to supplement ground-based severe 
storm reports in storms that occurred over 
sparsely-populated and/or mountainous areas. A 
more significant discrepancy might be expected 
with respect to the Metzger (2010) study, given 
that his definition of a lightning jump was rather 
different from that of Schultz et al. (2011), which 
is also used here. Aside from that, discrepancies 
are also to be expected because (a) we require at 
least 2 SSRs to define a “severe” storm, although 
this turns out to have a minor effect on FAR as 
described above, (b) the NLDN has lower cloud 
flash DE than LMAs, also as discussed above, 
and/or (c) we have a totally different sample of 
storms, with very different diversity in terms of 
both geographic and storm type considerations. 
Given all that, however, the fact that the down-
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sampled and original FAR values are almost all 
within about ±0.15 is remarkable and indicative of 
the critical importance of the representation of 
non-severe storms in the data sample. 
 
4. Filtered Lightning Jump Results 
The foregoing results indicate that the false alarm 
ratio is the primary issue in the use of lightning 
jumps to indicate which storms are likely to 
become severe. Our next objective, then, is to see 
if there is a way to augment the lightning jumps 
with other information available from ground-
based lightning networks in such a way as to 
reduce the FAR while, ideally, not affecting POD 
and overall skill too severely. After examining 
relationships between many non-jump lightning 
characteristics and our storm sample, in a 
multitude of 1-D and 2-D histograms, we settled 
on a combination of the three values described in 
section 2.7. Namely, those characteristics are (1) 
the pure IC flash fraction, (2) the rate of negative 
IC pulses due to pure IC flashes, and (3) the total 
flash rate, with the first two criteria having 
thresholds that are inversely dependent upon the 
total flash rate. 
 
We apply this augmented set of criteria as a filter 
on the basic lightning jumps. Specifically, we filter 
out any lightning jump that does not also pass the 
threshold of one or both of the first two above-
named criteria, subject to thresholding on total 
flash rate. The augmented criteria threshold(s) 
must be passed within ±15 minutes of the time of 
the lightning jump. The time of the warning 
becomes the later of the two times, either the 
lightning jump or the threshold(s) based on the 
augmented criteria. This way, we require that both 
the lightning jump and the filter criteria threshold 
be satisfied before we initiate the warning time 
window. Then, we open a 30-minute warning time 
window and verify in the same way as described 
in section 2.5 above. 
 
With that, the contingency table and 
corresponding performance statistics from the 
filtered lightning jump analysis are presented in 
Table 4. This table is comparable to Table 2A, 
where the warning time window was also set to 30 
minutes. We find that the raw number of false 
alarms is lower, by a factor of 2.6, when we filter 
the lightning jumps vs. when we use all lightning 
jumps. Predictably, however, the number of hits is 
also lower, but only by a factor of 1.4. Thus, the 
net decrease in false alarm events provides a 
small, but noticeable, drop in FAR of around 0.09. 
The equitable threat score is therefore 

substantially higher under the filtered lightning 
jump method (0.146) than it was with the 
unfiltered lightning jumps (0.096). Obviously, 
however, neither value of ETS is truly impressive, 
indicating that, ultimately, it appears to be difficult 
to use lightning data alone to discern storms that 
are likely to become severe from all other storms 
in an overall population of storms that is 
representative of the real-world thunderstorm 
situations faced by operational forecasters. 
 
Table 4. Contingency table after filtering lightning 
jumps using the augmented set of criteria 
described in section 2.7. 

  FORECASTS 

  YES NO 

O
B

S
 

Y
E

S
 

265 478 

N
O

 

831 18583 

    

  POD 0.357 

  FAR 0.758 

  ETS 0.146 

 
 
5. Conclusions and Future Work 
In this study, we have taken a large and 
geographically diverse sample of 3350 
thunderstorms, in which 93.5% were non-severe 
storms, and attempted to reproduce the results of 
the lightning jump analysis from prior literature 
and then augment that with additional information 
derivable from a ground-based lightning location 
system. We find that the skill (that is, ETS) of a 
lightning jump algorithm can be improved by 
filtering the jumps using other, non-jump lightning 
characteristics. However, the ETS in both the 
filtered and unfiltered cases is quite low and 
probably not operationally useful. 
 
Crucially, we find that we are more or less able to 
reproduce the FAR values from prior studies by 
down-sampling the number of non-severe storms 
from this study, and the number of lightning jumps 
occurring in those non-severe storms. This 
suggests the criticality of a representative sample 
of non-severe storms to the overall conclusions. 
This is one factor that was not raised by Miller et 
al. (2015). 
 
By contrast, Miller et al. (2015) did raise two other 
considerations that we have not yet taken into 
account in this study: (1) the use of lightning data 
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to identify and track thunderstorms, and (2) the 
non-LMA source of the total lightning information. 
The former issue affects how lightning flashes are 
assigned to thunderstorm cells, and thus might 
impact the determination of lightning jumps. The 
latter factor could also affect the determination of 
lightning jumps via the total lightning detection 
efficiency, the manner in which IC pulses and CG 
strokes are grouped into flashes, or some 
combination of the two. In the present study, we 
suspect that the use of NLDN, with its 
approximately 50% DE of pure IC flashes, should 
tend to produce fewer lightning jumps than LMA 
data, but it would be worth confirming that 
suspicion by comparing LMA and NLDN lightning 
jumps derived from a single set of thunderstorms 
that are tracked by the same algorithm. 
 
Theoretically, it might be argued that the present 
study is too diverse in its sampling of geography 
and storm type. The Miller et al. (2015) study, 
however, provides some counter-argument to 
that, insofar as they studied just a single NWS 
county warning area and they also separated the 
data sample by convective mode, and the FAR 
was still 90% even in cases identified as part of 
the multi-cell / supercell convective mode. It is 
well worth considering whether some kind of a 
priori knowledge should be taken into account in 
attempts to filter lightning jumps. However, the 
implication of the results of Miller et al. and the 
current study, in the context of combined data 
sets as used in Bedka et al. (2015) and Cintineo 
et al. (2014), is that the a priori knowledge should 
be from non-lightning sources. One possibility is 
sounding information, specifically MUCAPE, CIN, 
wet-bulb zero altitude, shear, and helicity. We 
have made preliminary efforts in the direction of 
including key sounding parameters in the 
classification or filtering of lightning jumps but 
have no concrete results to present yet. 
 
The finding that non-jump lightning 
characteristics, including the pure IC flash 
fraction, still do not raise the ETS to a level that 
might be considered “skillful”, is broadly 
consistent with a recent climatological study of the 
IC flash fraction over the U.S. by Medici et al. 
(2017, submitted). Their study finds areas of the 
U.S. that have similar climatological values of the 
pure IC flash fraction yet very different 
thunderstorm characteristics and tendencies 
toward severe weather, most notably, the interior 
of the northwestern U.S. vs. the high plains of the 
central U.S. They suggest, as a result, that high 
pure IC flash fraction is not uniquely driven by 

storm intensity or severity, nor by overall 
thunderstorm and lightning occurrence in general. 
Thus, there appears to be a clear need to try to 
separate those properties of lightning that are 
essentially climatological from those that may be 
specifically related to storm severity. 
 
One potentially serious limitation in the present 
study is the use of SSRs, and specifically, the 
assignment of SSRs to thunderstorm tracks. A 
unique and different approach to identifying 
hazardous thunderstorms in Finland is given by 
Rossi et al. (2013). Their method links emergency 
call information with storm tracking information 
and takes population density into account to 
correct the anticipated lack of emergency calls in 
sparsely populated areas. Conceptually, this idea 
is appealing in the context of the present study 
due to the wide geographic diversity of storms 
used here. An initial effort to apply the general 
concept of the Rossi et al. study to this study has 
thus far produced inconclusive results, but 
additional effort in that direction is warranted. 
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