THE ACCURACY OF WEATHER PREDICTIONS, FROM THE NEXT DAY TO THE
NEXT SEASON — AN ILLUSTRATION FROM AUSTRALIA

Harvey Stern?!

1. INTRODUCTION

In a paper by the same author also being
presented to a conference at the 2017 AMS Annual
Meeting (Stern, 2017), it is demonstrated how
positional and timing errors in the prediction of
synoptic scale systems extract a penalty when
verifying weather forecasts. In the course of
analysing verification data, that paper briefly touches
upon trends on the accuracy of day-to-day weather
forecasts for Melbourne, Australia (Map 1), out to
the end of Week-2.

This is the primary focus of the current paper,
which updates previously published work in this area
(Stern and Davidson, 2015a, 2015b, 2016) and also
in the area of seasonal outlook verification (Stern and
Pollock, 2011, 2013).
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Map 1 Location of Melbourne
Source: http://www.ga.gov.au/placename

2. PURPOSE

The purpose of this paper is to consider, in detail,
the accuracy of predictions for Melbourne of four
weather elements, out to the end of Week 4. The four
elements considered are minimum
temperature, maximum temperature, probability of
precipitation and amount of precipitation. The
accuracy of official seasonal climate outlooks for
Australia is also considered.
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3. ANALYSIS

The accuracy of the predictions of the four
weather elements, especially for lead times out to
Day-7, has increased substantially over the years.

To illustrate, the frequency of major Day-1
minimum temperature forecast errors (5 deg C or
greater) is shown to have fallen from between 2%
and 4% per year during the 1960s to the current
situation, where there has not been a single such
error since February 2014, 33 consecutive months
having been error free (Figure 1).

The percent variance in the observations
explained by these Day-1 forecasts has increased
from between 50% and 60% during the 1960s to
between 80% and 90% more recently (Figure 2).

Day 2-4 minimum temperature forecasts
explained just 40% of the variance when they were
first introduced in the mid-1990s, but now explain just
over 70%.

There is a similar story for Day 5-7 minimum
temperature forecasts, which explained just 15% of
the variance in the late 1990s, but more recently
have explained between 40% and 50%.

Over the decade since experimental Day 8-10
minimum  temperature forecasts have been
generated, the percent variance explained has
increased slightly from just under 10% to just over
10%.

However, the percent variance explained by the
experimental Day 11-14 forecasts has remained
below 5%.

The frequency of major Day-1 maximum
temperature forecast errors is shown to have fallen
from about 10% per year during the 1960s and 1970s
to fewer than 2% more recently (Figure 3).

The percent variance in the observations
explained by these Day-1 forecasts has increased
from between 50% and 60% during the 1960s to
between 80% and 90% more recently (Figure 4).

Day 2-4 maximum temperature forecasts
explained 30% of the variance when they were first
introduced in the mid-1980s, but now explain
between 70% and 80%.

There is a similar story for Day 5-7 minimum
temperature forecasts, which explained just 20% of
the variance in the late-1990s, but more recently
have explained about 50%.

Over the decade since experimental Day 8-10
maximum temperature forecasts have been
generated, the percent variance explained has
increased slightly from just under 10% to just over
10%.
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However, the percent variance explained by the
experimental Day 11-14 forecasts has remained
about 5%.

The percent variance in the observations
explained by rainfall amount Day-1 forecasts
fluctuates markedly, but has increased from between
25% and 35% 15 years ago to between 50% and
65% more recently (Figure 5), having peaked at
about 70% during the very wet 2010-2011 La Nifia
event.

Figure 5 shows improvement in the Day 2-4
rainfall amount forecasts. They explained between
20% and 35% of the variance 15 years ago, but now
explain between 40% and 50%, having peaked at
about 55% during the very wet 2010-2011 La Nifia
event.

However, there is little overall improvement
shown in regard to the Day 5-7 rainfall amount
forecasts, which has explained between 5% and
20% of the variance for most of the last 15 years,
aside from peaking at around 30% during the very
wet 2010-2011 La Nifia event.

The skill displayed by the experimental Day 8-10
rainfall amount forecasts has also shown little
improvement, having fluctuated around 5%, whilst
the skill displayed by the corresponding Day 11-14
forecasts has remained at or below 2%.

The percent variance in the observations
explained by rainfall probability Day-1 forecasts also
fluctuates markedly, but has increased from between
30% and 45% 10 to 15 years ago to over 50% more
recently (Figure 6).

Day 2-4 rainfall probability forecasts have only
improved slightly, from between 30% and 35% to
about 40%, whilst forecasts for longer lead times
have shown little improvement.

Figure 7 and Figure 8 illustrate how variations in
rainfall amount forecast skill might be related to the
different types of synoptic patterns associated with
La Nifia and El Nifio events. Significant peaks and
troughs in the skill are shown to coincide with the
occurrence of significant peaks and troughs in the
Southern Oscillation Index (SOI).

One intriguing aspect of this feature, for which the
author is uncertain as to its explanation, is that the
peaks and troughs in skill appear to slightly lead the
peaks and troughs in the SOI. The left hand image of
Figure 9 suggests a lead of 5 months. One colleague
has proposed a plausible cause. This is that it is
possible that it is the weather phenomena that drives
the ElI Niflo Southern Oscillation (ENSO)
phenomenon, rather than vice versa (Davidson,
2016). This raises the following question:

Is the application of our understanding of the
ENSO phenomenon responsible for the skill
displayed by seasonal rainfall predictions?

The right hand image suggests that perhaps it
may not, and that persistence of the prevailing
synoptic evolution may be a larger factor.

This brings us now to an analysis of the accuracy
of official seasonal climate outlooks for Australia that
are issued by the Bureau of Meteorology.

Regarding the accuracy of these seasonal
climate outlooks, three elements are considered -
precipitation, and overnight and daytime
temperature. In each case, some skill is evident,
although that level of skill varies from State to State
and with time of the year.

To illustrate, the skill displayed by the minimum
temperature outlook peaks in the middle of the year
and is at its nadir at the end of the year (Figure 10),
the skill displayed by the maximum temperature
outlook also peaks in the middle of the year but is at
its nadir in spring (Figure 11), whilst the rainfall
outlook’s skill peaks in spring and is at its minimum
during autumn. (Figure 12).

Regarding the geographic distribution of skill, the
performance is better in the tropical or sub-tropical
States than in those further south (not unexpected
given that the key driving forces are the Indian Ocean
Dipole and ENSO phenomenon, both features of the
tropical oceans).

To summarise, the skill displayed by the minimum
temperature outlook peaks in the Northern Territory
and is at its weakest in Tasmania (Figure 13), that
displayed by the maximum temperature outlook
peaks in Queensland and is also at its weakest in
Tasmania (Figure 14), whilst the rainfall outlook is at
its best in Western Australia and at its worst in South
Australia (Figure 15).

Examination of trends in the accuracy of the
outlooks yields an unexpected result. Whilst the skill
displayed by both minimum temperature and
maximum temperature outlooks appear to be
declining (Figures 16 and 17), the skill displayed by
the rainfall outlooks is increasing (Figure 18).

The day-to-day weather forecasts for Melbourne
beyond Week-2 are weather forecasts that have
been generated by an algorithm that interprets the
output of the ECMWF Ensemble Control Model. It is
found that little skill is evident for day-to-day
predictions of weather with lead times beyond Day-
14. Specifically, little skill is displayed by any of these
long range forecasts, as depicted for minimum
temperature by Figure 19, for maximum temperature
by Figure 20, for rainfall amount by Figure 21, and
for rainfall probability by Figure 22.

4. KEY CONCLUSIONS

The frequency of major Day-1 maximum
temperature forecast errors (greater than 5 deg C) is
shown to have fallen from about 30 per year during
the 1960s and 1970s to fewer than 5 per year now.
The percent variance in the observations explained
by these Day-1 forecasts has increased from around
50% during the 1960s and 1970s to between
80% and 90% more recently. The accuracy of
maximum temperature forecasts for days 5-7, is now
comparable to that displayed by the Day-1
predictions of several decades ago.



Rainfall amount forecasts have also increased in
accuracy, with Day-1 rainfall amount forecasts,
having explained just 30% of the variance some 15
years ago, now explaining about 60% of the
variance. However, fluctuations in the level of skill
appear to be strongly related to the synoptic regimes
associated with various phases of the ENSO
phenomenon.

Regarding the accuracy of seasonal climate
outlooks, three elements are considered -
precipitation, and overnight and daytime
temperature. In each case, some skill is evident,
although that level of skill varies from State to State
and with time of the year. For example, the
precipitation outlook, which has been issued officially
since the late 1980s, displays greater skill in the
second half of the calendar year than in the first
half and also displays greater skill in areas covering
the tropics than in more southern regions.

Before closing, it needs to be recorded that day-
to-day weather forecasts for Melbourne beyond
Week-2, which have been generated by an algorithm
that interprets the output of the ECMWF Ensemble
Control Model, display little skill.
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FIGURE 22 The accuracy of Day 1-32
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