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1. INTRODUCTION 

     In a paper by the same author also being 
presented to a conference at the 2017 AMS Annual 
Meeting (Stern, 2017), it is demonstrated how 
positional and timing errors in the prediction of 
synoptic scale systems extract a penalty when 
verifying weather forecasts. In the course of 
analysing verification data, that paper briefly touches 
upon trends on the accuracy of day-to-day weather 
forecasts for Melbourne, Australia (Map 1), out to 

the end of Week-2. 

     This is the primary focus of the current paper, 
which updates previously published work in this area 
(Stern and Davidson, 2015a, 2015b, 2016) and also 
in the area of seasonal outlook verification (Stern and 
Pollock, 2011, 2013).  

 

 

Map 1 Location of Melbourne   
Source: http://www.ga.gov.au/placename  

 

2. PURPOSE 

     The purpose of this paper is to consider, in detail, 
the accuracy of predictions for Melbourne of four 
weather elements, out to the end of Week 4. The four 
elements considered are minimum 
temperature, maximum temperature, probability of 
precipitation and amount of precipitation. The 
accuracy of official seasonal climate outlooks for 
Australia is also considered.  
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3. ANALYSIS 

     The accuracy of the predictions of the four 
weather elements, especially for lead times out to 
Day-7, has increased substantially over the years.  

     To illustrate, the frequency of major Day-1 
minimum temperature forecast errors (5 deg C or 
greater) is shown to have fallen from between 2% 
and 4% per year during the 1960s to the current 
situation, where there has not been a single such 
error since February 2014, 33 consecutive months 
having been error free (Figure 1).  

     The percent variance in the observations 
explained by these Day-1 forecasts has increased 
from between 50% and 60% during the 1960s to 
between 80% and 90% more recently (Figure 2).  

     Day 2-4 minimum temperature forecasts 
explained just 40% of the variance when they were 
first introduced in the mid-1990s, but now explain just 
over 70%.  

     There is a similar story for Day 5-7 minimum 
temperature forecasts, which explained just 15% of 
the variance in the late 1990s, but more recently 
have explained between 40% and 50%.  

     Over the decade since experimental Day 8-10 
minimum temperature forecasts have been 
generated, the percent variance explained has 
increased slightly from just under 10% to just over 
10%.  

     However, the percent variance explained by the 
experimental Day 11-14 forecasts has remained 
below 5%.  

     The frequency of major Day-1 maximum 
temperature forecast errors is shown to have fallen 
from about 10% per year during the 1960s and 1970s 
to fewer than 2% more recently (Figure 3).  

     The percent variance in the observations 
explained by these Day-1 forecasts has increased 
from between 50% and 60% during the 1960s to 
between 80% and 90% more recently (Figure 4).  

     Day 2-4 maximum temperature forecasts 
explained 30% of the variance when they were first 
introduced in the mid-1980s, but now explain 
between 70% and 80%.  

     There is a similar story for Day 5-7 minimum 
temperature forecasts, which explained just 20% of 
the variance in the late-1990s, but more recently 
have explained about 50%.  

     Over the decade since experimental Day 8-10 
maximum temperature forecasts have been 
generated, the percent variance explained has 
increased slightly from just under 10% to just over 
10%.  
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     However, the percent variance explained by the 
experimental Day 11-14 forecasts has remained 
about 5%.  

     The percent variance in the observations 
explained by rainfall amount Day-1 forecasts 
fluctuates markedly, but has increased from between 
25% and 35% 15 years ago to between 50% and 
65% more recently (Figure 5), having peaked at 
about 70% during the very wet 2010-2011 La Niña 
event.  

     Figure 5 shows improvement in the Day 2-4 
rainfall amount forecasts. They explained between 
20% and 35% of the variance 15 years ago, but now 
explain between 40% and 50%, having peaked at 
about 55% during the very wet 2010-2011 La Niña 
event.  

     However, there is little overall improvement 
shown in regard to the Day 5-7 rainfall amount 
forecasts, which has explained between 5% and 
20% of the variance for most of the last 15 years, 
aside from peaking at around 30% during the very 
wet 2010-2011 La Niña event.  

     The skill displayed by the experimental Day 8-10 
rainfall amount forecasts has also shown little 
improvement, having fluctuated around 5%, whilst 
the skill displayed by the corresponding Day 11-14 
forecasts has remained at or below 2%. 

     The percent variance in the observations 
explained by rainfall probability Day-1 forecasts also 
fluctuates markedly, but has increased from between 
30% and 45% 10 to 15 years ago to over 50% more 
recently (Figure 6).   

     Day 2-4 rainfall probability forecasts have only 
improved slightly, from between 30% and 35% to 
about 40%, whilst forecasts for longer lead times 
have shown little improvement. 

     Figure 7 and Figure 8 illustrate how variations in 
rainfall amount forecast skill might be related to the 
different types of synoptic patterns associated with 
La Niña and El Niño events. Significant peaks and 
troughs in the skill are shown to coincide with the 
occurrence of significant peaks and troughs in the 
Southern Oscillation Index (SOI).  

     One intriguing aspect of this feature, for which the 
author is uncertain as to its explanation, is that the 
peaks and troughs in skill appear to slightly lead the 
peaks and troughs in the SOI. The left hand image of 
Figure 9 suggests a lead of 5 months. One colleague 
has proposed a plausible cause. This is that it is 
possible that it is the weather phenomena that drives 
the El Niño Southern Oscillation (ENSO) 
phenomenon, rather than vice versa (Davidson, 

2016). This raises the following question: 

     Is the application of our understanding of the 
ENSO phenomenon responsible for the skill 
displayed by seasonal rainfall predictions?  

     The right hand image suggests that perhaps it 
may not, and that persistence of the prevailing 
synoptic evolution may be a larger factor. 

     This brings us now to an analysis of the accuracy 
of official seasonal climate outlooks for Australia that 
are issued by the Bureau of Meteorology.  

     Regarding the accuracy of these seasonal 
climate outlooks, three elements are considered - 
precipitation, and overnight and daytime 
temperature. In each case, some skill is evident, 
although that level of skill varies from State to State 
and with time of the year.  

     To illustrate, the skill displayed by the minimum 
temperature outlook peaks in the middle of the year 
and is at its nadir at the end of the year (Figure 10), 
the skill displayed by the maximum temperature 
outlook also peaks in the middle of the year but is at 
its nadir in spring (Figure 11), whilst the rainfall 
outlook’s skill peaks in spring and is at its minimum 
during autumn. (Figure 12). 

     Regarding the geographic distribution of skill, the 
performance is better in the tropical or sub-tropical 
States than in those further south (not unexpected 
given that the key driving forces are the Indian Ocean 
Dipole and ENSO phenomenon, both features of the 
tropical oceans). 

     To summarise, the skill displayed by the minimum 
temperature outlook peaks in the Northern Territory 
and is at its weakest in Tasmania (Figure 13), that 
displayed by the maximum temperature outlook 
peaks in Queensland and is also at its weakest in 
Tasmania (Figure 14), whilst the rainfall outlook is at 
its best in Western Australia and at its worst in South 
Australia (Figure 15). 

     Examination of trends in the accuracy of the 
outlooks yields an unexpected result. Whilst the skill 
displayed by both minimum temperature and 
maximum temperature outlooks appear to be 
declining (Figures 16 and 17), the skill displayed by 
the rainfall outlooks is increasing (Figure 18). 

     The day-to-day weather forecasts for Melbourne 
beyond Week-2 are weather forecasts that have 
been generated by an algorithm that interprets the 
output of the ECMWF Ensemble Control Model. It is 
found that little skill is evident for day-to-day 
predictions of weather with lead times beyond Day-
14. Specifically, little skill is displayed by any of these 
long range forecasts, as depicted for minimum 
temperature by Figure 19, for maximum temperature 
by Figure 20, for rainfall amount by Figure 21, and 
for rainfall probability by Figure 22.  

4. KEY CONCLUSIONS 

     The frequency of major Day-1 maximum 
temperature forecast errors (greater than 5 deg C) is 
shown to have fallen from about 30 per year during 
the 1960s and 1970s to fewer than 5 per year now. 
The percent variance in the observations explained 
by these Day-1 forecasts has increased from around 
50% during the 1960s and 1970s to between 
80% and 90% more recently. The accuracy of 
maximum temperature forecasts for days 5-7, is now 

comparable to that displayed by the Day-1 
predictions of several decades ago. 

 



 

 

     Rainfall amount forecasts have also increased in 
accuracy, with Day-1 rainfall amount forecasts, 
having explained just 30% of the variance some 15 
years ago, now explaining about 60% of the 
variance.     However, fluctuations in the level of skill 
appear to be strongly related to the synoptic regimes 
associated with various phases of the ENSO 
phenomenon.  

     Regarding the accuracy of seasonal climate 
outlooks, three elements are considered - 
precipitation, and overnight and daytime 
temperature. In each case, some skill is evident, 
although that level of skill varies from State to State 
and with time of the year. For example, the 
precipitation outlook, which has been issued officially 
since the late 1980s, displays greater skill in the 
second half of the calendar year than in the first 
half and also displays greater skill in areas covering 
the tropics than in more southern regions. 

     Before closing, it needs to be recorded that day-
to-day weather forecasts for Melbourne beyond 
Week-2, which have been generated by an algorithm 
that interprets the output of the ECMWF Ensemble 
Control Model, display little skill. 
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FIGURE 1 Trends in the accuracy of minimum 
temperature forecasts: % errors 5 deg C or 
greater.  

 

 

FIGURE 2 Trends in the accuracy of minimum 
temperature forecasts: % variance in the 
observations explained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 Trends in the accuracy of maximum 
temperature forecasts: % errors 5 deg C or 
greater. 

 

 

FIGURE 4 Trends in the accuracy of maximum 
temperature forecasts: % variance in the 
observations explained. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

FIGURE 5 Trends in the accuracy of rainfall 
amount forecasts: % variance in the 
observations explained. 

 

 

 

FIGURE 6 Trends in the accuracy of rainfall 
probability forecasts: % variance in the 
observations explained. 

 

FIGURE 7 Fluctuations in the value of the 
Southern Oscillation Index (SOI). 

 

 

 

 

FIGURE 8 Fluctuations in the % variance in the 
rainfall amount observations explained by the  
forecasts (trend removed). 

 

 

 

FIGURE 9       Dependence of the correlation coefficient  
- between the % variance in the day-to-day observed rainfall that is explained by the day-to-day 

predictions and the average SOI over the past 12 months  
             on the number of months that the % variance explained leads the SOI (left hand image): 
                        Comparison of the 5-year ‘running’ Anomaly Correlation Coefficient  

- between the observed seasonal rainfall, and the observed seasonal rainfall three months prior 
with that between observed seasonal rainfall, and forecast seasonal rainfall (right hand image). 

 



 

 

 

FIGURE 10 The accuracy of seasonal 
predictions of minimum temperature [2000-
2016], by  season. 

 

 

 

 

 

 

FIGURE 11 The accuracy of seasonal 
predictions of maximum temperature [2000-
2016], by  season. 

 

 

 

 

 

 

 

FIGURE 12 The accuracy of seasonal 
predictions of rainfall [1989-2016], by  season. 

 

FIGURE 13 The accuracy of seasonal 
predictions of minimum temperature [2000-
2016] by  State. 

 

FIGURE 14 The accuracy of seasonal 
predictions of maximum temperature [2000-
2016] by  State. 

 

FIGURE 15 The accuracy of seasonal 
predictions of rainfall  [2000-2016] by State. 



 

 

 

FIGURE 16 Trends in the accuracy of seasonal 
predictions of minimum temperature. 

 

 

 

 

FIGURE 17 Trends in the accuracy of seasonal 
predictions of maximum temperature. 

 

 

 

 

 

FIGURE 18 Trends in the accuracy of seasonal 
predictions of rainfall. 

 

 

 

 

FIGURE 19 The accuracy of Day 1-32 
predictions  of minimum temperature. 

 

FIGURE 20 The accuracy of Day 1-32 
predictions  of maximum temperature. 

 

FIGURE 21 The accuracy of Day 1-32 
predictions  of rainfall amount. 

 

FIGURE 22 The accuracy of Day 1-32 
predictions  of rainfall probability. 


