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1. Introduction∗  
 A three-dimensional variational (3DVar) data assimilation 
system was developed by Gao et al. (2013) for analyzing 
storm winds from radar observations. This 3DVar system 
can identify storm-scale mid-level vortices, but the vortex 
winds may not be fully resolved due to the isotropic 
background error covariance used for each velocity 
component in the cost-function. To improve the vortex 
winds, a two-dimensional variational (2DVar) method was 
developed by formulating the background error covariance 
with desired vortex-flow dependences in a moving frame 
following the mesocyclone on each tilt of radar scan (Xu et 
al. 2015a). This 2DVar can be extended to analyze vortex 
winds in a three-dimensional (3D) or even four-dimensional 
(4D) space. To achieve this, the vortex center location of the 
detected mesocyclone needs to be estimated first as a 
continuous function of height and time in the 4D space. 
After this, the analysis domain needs to be transformed into 
a slantwise cylindrical coordinate system moving and co-
centered with the estimated vortex center in the 4D space. 
Then, the background error covariance functions can be 
formulated in the transformed coordinate system to obtain 
the desired vortex-flow dependences for analyzing the 3D 
vortex winds in the 4D space. The methodologies and related 
formulations developed for such an extension are presented 
in this paper. The effectiveness and performances of the 
extended method are illustrated by the results obtained for 
the tornadic mesocyclone that struck Moore in Oklahoma on 
20 May 2013. 
 
2. Estimating vortex center location 
 When a mesocyclone is detected as a by-product of the 
velocity dealiasing (Xu et al. 2013), its vortex center location 
is also estimated on each tilt of radar scan. After this estimate 
is fine-tuned by the two-step algorithm in section 4 of Xu et 
al. (2015b), the vortex center location and movement can be 
estimated as continuous functions of (z, t) by fitting a smooth-
function form of xc(z, t) constructed by B-spline basis 
functions to the fine-tuned vortex center locations, where xc ≡ 
(xc, yc) denotes the vortex center location in the horizontal. In 
particular, as shown in Xu et al. (2015b), the fitting minimizes 
the following cost functions: 
 
 J(aknß) = ∑i[xc(zi, ti | aknß) - xci]2, 
  J(bknß) = ∑i[yc(zi, ti | bknß) - yci]2, 
 
where ∑j denotes the summation over i, xc(zi, ti | aknß) = 
∑knßaknßBk(zj)Bn

ß(tj), yc(zi, ti | bknß) = ∑knßbknßBk(zj)Bn
ß(tj), ∑knß 

denotes the summation over k, n and ß, Bk(z) denotes the 

                                                
∗Corresponding author address: Qin Xu, National Severe Storms 
Laboratory, 120 David L. Boren Blvd., Norman, OK 73072-7326; E-
mail: Qin.Xu@noaa.gov 

linear basis function at the kth node point in z, Bn
ß(t) denotes 

the quadratic basis function of ßth order (with ß = 0, 1) at the 
nth node point in t, and xci = (xci, yci) denotes the ith vortex 
center location estimated and fine-tuned at (zi, ti).  
 For the 20 May 2013 Oklahoma Moore tornadic 
mesocyclone, xc(z, t) is estimated by using 10 volume radial-
velocity scans from the operational KTLX radar and 22 sector 
radial-velocity scans from the NSSL phased-array radar over 
the local time period from 14:52 to 15:35. The estimated xc(z, 
t) is plotted in Fig. 1. As shown in Fig. 1, the vortex core 
became increasingly vertical as the mesocyclone moved 
toward Moore and became nearly vertical around the local 
time 15:13. The mesocyclone also became increasingly 
intense as its vortex core became increasingly vertical.  
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Fig. 1. Vortex center track at surface level (z = 0) plotted by 
green curve with local times marked in green. The red line at 
each marked local time shows the vertical profile of the 
estimated vortex center location for the height increased from 
z = 0 to 5 km at the fixed time. The (x, y) coordinates (labeled 
in yellow) are centered nearby the KTLX radar site (outside 
the map). 
 
3. Coordinate transformation and flow partition 
 In order to formulate the background wind error 
correction functions in a slantwise cylindrical coordinate 
system co-centered with the estimated xc(z, t) in the 4D 
space, we need to transform the local Cartesian coordinate 
system (x, y, z, t) first into the following coordinate system: 
 
 (x’, y’, z’, t’) = (x - xc(z, t) ,  y - yc(z, t), z, t). (3.1) 
 
This transformation ensures that the origin of (x’, y’) is co-
centered and moves with xc(z, t) at every vertical level. The 
space and time differential operators are transformed by (∂x, 
∂y, ∂z, ∂t) = (∂x’, ∂y’, ∂z’ - xcz•∇’, ∂t’ - uc•∇’), where xcz = ∂zxc 
(that is, xcz = ∂zxc and ycz = ∂zyc), uc = xct = ∂txc (that is, uc = 
xct = ∂txc and uc = yct = ∂tyc) and ∇’ ≡ (∂x’, ∂y’). In the 
transformed coordinates, the mass continuity equation can be 
written into  
 
 ∇’•(ρouv) + ∂z’(ρow) = 0, (3.2) 
 



 

where uv ≡ u - uc - wxcz is the horizontal component of the 
vortex wind in the (x’, y’, z’, t’)-coordinates, u is the total 
horizontal velocity, w is the vertical velocity, and ρo is the 
air density. Here, uv is the vortex part of u and it can be 
partitioned into uv = us + ua where us (or ua) is the 
axisymmetric (or asymmetric) part of uv. The three-
dimensional counterpart of uv in (x’, y’, z’, t’) is (uv, w) ≡ uv 
+ wk’ where k’ is the unit vector along the z’-coordinate. 
The three-dimensional incremental wind with respect to uc 
in (x, y, z, t) is uv + wxcz + wk where k is the unit vector 
along the z-coordinate. This incremental wind can be also 
partitioned into two parts: the axisymmetric part denoted by 
us + wsxcz + wsk, and the remaining asymmetric part denoted 
by ua + waxcz + wak.  
 The goal is to estimate (uv, w) by fitting ro•(uv + wxcz + 
wk) to the radial-velocity innovations defined by  
 
 vr

i ≡ vr
o - wTsinθ - ro•uc, (3.3) 

 
where vr

o denotes the radar observed radial velocity, wT (< 0) 
is the terminal velocity of hydrometeors, θ is the slope angle 
of radar beam relative to the Earth surface beneath the 
observation point, and ro is the unit vector in the radar beam 
direction.  
 To achieve the above goal, we need to estimate (us, ws) in 
the first step by fitting ro•(us + wsxcz + wsk) to vr

i, and then 
estimate (ua, wa) in the second step by fitting ro•(ua + waxcz + 
wak) to the updated radial-velocity innovations defined by 
 
 vr

is ≡ vr
i - ro•(us + wsxcz + wsk). (3.4) 

 
Since the vortex is centered at the origin of (x’, y’) for any 
given (z’, t’), we can further transform (x’, y’, z’) to a vortex-
center-following cylindrical coordinate system (R, ß, z’), 
where  
 
 R = |x’| = (x’2 + y’2)1/2,  ß = tan-1(y’, x’),  (3.5) 
 
and (x’, y’) = R(cosß, sinß) for given (z’, t’).  
 
4. 2DVar for axisymmetric-part wind retrieval 
a. Control variables and observation operator 
 The axisymmetric part of the vortex wind, (us, ws), is 
assumed to be quasi-stationary in  (x’, y’, z’, t’) and thus can 
be expressed as a function of (R, z’) to fit to vr

i over the 
analysis time window (≈ 5 min to cover a full volume scan 
from each radar). In (R, ß), us can be conveniently expressed 
by us = RoVR + ToVT, where Ro (or To) is the unit vector 
along the radial (or tangential) direction, and VR (or VT) is 
the radial (or tangential) component of us. For (us, ws) in (R, 
z’), the mass continuity equation (3.1) reduces to  
 
  ∂R(ρoRVR) + ∂z’(ρoRws) = 0, (4.1) 
 
Constrained by (4.1), the vertical circulation (VR, ws) in (R, 
z’) can be expressed by the vertical stream-function ψs 
defined below: 
 
  ρoR(VR, ws) ≡ (-∂z’ψs, ∂Rψs). (4.2) 
 

The boundary conditions of ws = 0 at z’ = 0 and VR = 0 at R 
= 0 can be satisfied automatically by setting ψs = 0 at z’ = 0 
and R = 0.  
 The three components of us + wsxcz + wsk ≡ us + wsk ≡ (us, 
vs, ws) can be expressed by the two control variables, ψs and 
VT, in the following forms: 
 
 us = -cosß∂z’ψs/ρo - sinßVT + xczws, 
 vs = -sinß∂z’ψs/ρo + cosßVT + yczws, 
 ws = ws = ∂R(Rψs)/(ρoR). (4.3) 
 
The radial component of us + wsk in the original (x, y, z, t) 
space is then given by 
 
 vr ≡ ro•(us + wsk) = (ussinϕ + vscosϕ)cosθ + wssinθ, (4.4) 
 
where ϕ is the azimuthal angle (with respect to y-coordinate) 
of the concerned observation point viewed from the radar 
site, and θ is as in (3.3). The observation operator that relates 
the control variables (ψs, VT) to the innovation vr

i in (3.3) is 
thus formulated by (4.3)-(4.4).  
 
b. Cost-function and vortex-flow-dependent background error 
covariance functions 
 The cost-function for fitting vr in (4.3)-(4.4) to vr

i in (3.3) 
is 
 
  J = aTB-1a/2  + (Ha - d)TO-1(Ha - d)/2, (4.5) 
 
where a ≡ (a1

T, a2
T)T, a1 (or a2) is the state vector of ψs (or 

VT), ( )T denotes the transpose of ( ), B is the background error 
covariance matrix, O is the observation error covariance 
matrix, H is the observation operator formulated in (4.3)-(4.4) 
(for observations from any given radars), and d is the 
innovation vector, that is, the state vector of vr

i in (3.3). The 
observation errors are assumed to be uncorrelated, so O = 
σo

2I, where σo
2 is the observation error variance and I is the 

identity in the observation space.  
 The background errors of (ψs, VT) are assumed to be 
uncorrelated and nearly homogeneous in (r, h) with zero 
mean, where   
 
  r ≡ [ln(1 + R/Rc)]/l  and  h ≡ z’/H. (4.6) 
 
Here, the scaling factor for R is set to Rc = 1 km according 
the averaged horizontal resolution of radar radial-velocity 
observations, and l = ½ (or H = 1 km) is the de-correlation 
length (or depth) scale, which is assumed to be the same for 
ψs and VT and thus is conveniently factored into r (or h). 
 The above assumed near homogeneity and non-correlation 
for the background errors of (ψs, VT) imply that the error 
covariance tensor function has the following diagonal form: 
 
  B = (B1, B2)diag, (4.7) 
 
The two diagonal components of B are modeled by   
 
  B1 = σ1

2C1(ri, rj; hi, hj), 
  B2 = σ2

2C2(ri, rj; hi - hj), (4.8) 
 



 

where σ1 (or σ2) is the error standard deviation for ψs (or 
VT), C1(ri, rj; hi, hj) and C2(ri, rj; hi - hj) are pseudo-
correlation functions constructed by  
 
  C1(ri, rj; hi, hj) = C0(ri, rj)C0(hi, hj), 
  C2(ri, rj; hi - hj) = C0(ri, rj)C2(hi - hj), (4.9) 
 
where 
 
  C0(ri, rj) ≡ exp[-(ri - rj)2/2] - exp[-(ri + rj)2/2], 
  C0(hi, hj) ≡ exp[-(hi - hj)2/2] - exp[-(hi + hj)2/2],  
  C2(hi - hj) ≡ exp[-(hi - hj)2/2].   
 
Note that the Gaussian correlation function is modified in 
C0(ri, rj) by subtracting its mirror image obtained by mirror-
reflecting one of the corrected points, either ri or rj, with 
respect to r = 0, so C0(ri, rj)] can have the desired property of 
C0(ri, rj) = 0 for ri = 0 or rj = 0 to ensure the analyzed ψs and 
VT always approach to zero toward the vortex center. The 
Gaussian correlation function is also modified in C0(hi, hj) 
by subtracting its mirror image to ensure that the analyzed ψs 
becomes zero at the lower boundary h = 0. 
 The background error covariance matrix B in (4.5) is 
constructed by the covariance functions formulated in (4.7)-
(4.9). The square root of B can be derived analytically by 
using the approach developed in section 3c of Xu et al. 
(2015a), so the cost-function in (4.5) can be preconditioned 
into the same matrix form as shown in (22) of Xu et al. 
(2015a). This can greatly improve the computational 
efficiency. The detailed matrix formulations are lengthy and 
thus omitted here. 
 
5. 3DVar for asymmetric-part wind retrieval 
 The asymmetric part of the vortex wind, (ua, wa), is also 
assumed to be quasi-stationary in (x’, y’, z’, t’), so it can be 
expressed as a function of (R, ß, z’) to fit to vr

is over the 
analysis time window (≈ 5 min). In (R, ß, z’), ua can be 
expressed by ua = RoVR + ToVT, where VR (or VT) is the 
radial (or tangential) component of ua.  
 In the (x’, y’, z’)-coordinates, ρoua can be expressed by  
 
  ρoua = -∂y’ψ + ∂x’χ  and  ρova = ∂x’ψ + ∂y’χ. (5.1) 
 
This implies that ua can be partitioned into ua = ua

r + ua
d 

with ρoua
r ≡ k×∇’ψ and ρoua

d ≡ ∇’χ for the rotational and 
divergent parts of ua, respectively. Thus, VR and VT can be 
partitioned into  
  
  VR = VR

r + VR
d with ρoVR

r ≡ -R-1∂ßψ and ρoVR
d ≡ ∂Rχ,   (2.6a) 

 
while VT can be partitioned into  
 
  VT = VT

r + VT
d with ρoVT

r ≡ ∂Rψ and ρoVT
d ≡ R-1∂ßχ.  

 
 The mass continuity equation for the asymmetric part has 
the form of ∂z’(ρowa) = -∇’2χ  in (x’, y’, z’) or, equivalently, 
 
  ∂z’(ρowa) = -R-1(∂RR∂Rχ) - R-2∂ß

2χ  in (R, ß, z’). (5.2) 
 
By transforming the two control variables, ψ and χ, into  

  X ≡ ∫0
z’χdz/[tanh(R/Ro)]  and Y ≡ ψ/[tanh(R/Ro)], (5.3) 

 
an useful explicit expression of wa = -∇’2[Xtanh(R/Ro)] is 
derived from (5.2). Since the analyzed X (or Y) approaches 
O(R) as R → 0, the transformation introduced in (5.3) can 
prevent the analyzed divergence ∇’2χ (or vorticity ∇’2ψ) 
from becoming singular as R → 0.  
 The three components of ua + waxcz + wak ≡ ua + wak ≡ 
(ua, va, wa) can be expressed by X and Y in the following 
forms:  
 
  ua = [cosß(F∂R∂z’X + ∂z’X∂RF - F∂ßY/R)  
        - sinß(F∂RY + Y∂RF + F∂ß∂z’X/R)]/ρo + xczwa, 
  va = [sinß(F∂R∂z’X + ∂z’X∂RF - F∂ßY/R)  
    + cosß(F∂RY + Y∂RF + F∂ß∂z’X/R)]/ρo + yczwa, 
  wa = wa = -[R-1(F∂RX + X∂RF) + F∂R

2X + 2∂RX∂RF  
       + X∂R

2F + R-2F∂ß
2X]/ρo. (5.4) 

 
The radial component of ua + wak in the original (x, y, z, t) 
space is given by 
 
  vr = (uasinϕ + vacosϕ)cosθ + wasinθ. (5.5)  
 
The observation operator that relates the control variables 
(X, Y) to the innovation vr

is in (3.4) is thus formulated by 
(5.4)-(5.5).  
 The cost-function for fitting vr in (5.4)-(5.5) to vr

is in (3.4) 
has the same matrix form as that in (4.5), except that now a1 
(or a2) is the state vector of X (or Y), H is the observation 
operator formulated in (5.4)-(5.5), d is the state vector of vr

is, 
and B is formulated and constructed differently as described 
below. 
 The random vector fields of background errors for (X, Y) 
are assumed to be not correlated and nearly homogeneous 
with zero mean in (r, ß, h), so the error covariance tensor 
function has the same diagonal form as that in (4.7), but the 
two diagonal components of B are modeled by   
 
  B1 = σ1

2C1(ri, rj; hi, hj; φi - φj),  
  B2 = σ2

2C2(ri, rj; hi - hj; φi - φj), (5.6) 
 
where σ1 (or σ2) is the error standard deviation for X (or Y), 
C1(ri, rj; hi, hj; φi - φj) and C2(ri, rj; hi - hj; φi - φj) are pseudo-
correlation functions constructed by  
 
  C1(ri, rj; hi, hj; φi - φj) = C0(ri, rj)C0(hi, hj)C(φi - φj; Φ)  
  C2(ri, rj; hi - hj; φi - φj) = C0(ri, rj)C2(hi - hj)C(φi - φj; Φ). (3.5b)   
 
Here, C0(ri, rj), C0(hi, hj) and C2(hi - hj) are the same as those 
used in (4.9), while C(φi - φj; Φ) is similar to that in (16c) of 
(Xu et al. 2015a) but the de-correlation arc Φ is no longer 
constant and is formulated as a function of R to ensure that 
the de-correlation arc length approaches π in the limit of R 
→ 0 and approaches the de-correlation radial length in R in 
the limit of R → ∞.  
 The background error covariance matrix B is constructed 
by the covariance functions formulated in (5.6). The square 
root of B can be derived analytically, again by using the 
approach developed in section 3c of Xu et al. (2015a), so the 
cost-function can be preconditioned to improve the 



 

computational efficiency. The detailed matrix formulations 
are very lengthy and thus omitted here.  
 
6. Results 
 For the 20 May 2013 Oklahoma Moore mesocyclone, a 
time series of 3D vortex wind fields are retrieved in 10 
consecutive analysis time windows over the same time 
period (from local time 14:52 to 15:35) as shown in Fig. 1.  
 The vortex winds retrieved in the second analysis time 
window (local time 14:55-14:58) are shown in Fig. 2. The 
retrieval is produced by using one volume radial-velocity 
scan (on 13 tilts at 0.5o, 0.9o, 1.3o, 1.8o, 2.4o, 3.1o, 4.0o, 5.1o, 
6.4o, 8.0o, 10.1o, 12.5o, 15.6o) from the operational KTLX 
radar and one sector radial-velocity scan (on 10 tilts at 0.5o, 
0.9o, 1.3o, 1.8o, 2.4o, 3.0o, 4.0o, 6.4o, 8.0o, 10.0o). The upper 
panel of Fig. 2 is a vertical cross-section of the axisymmetric 
part of the vortex flow, and this vertical cross-section is 
intersected along the slantwise vortex core shown by the 
vertical profile of xc(z, t) plotted by the red line at the local 
time of t = 14:55 in Fig. 1. As shown by this vertical cross-
section, the axisymmetric part of the vortex flow can be 
characterized distinctly by the following features: (i) a 
highly slanted vortex core with a ring of maximum 
tangential velocity in the shallow vertical layer around z = 
0.75 km, (ii) a strong downdraft along the slantwise vortex 
core from the vertical level at z = 2.5 km down to the surface 
at z = 0, and (iii) a broad updraft tube around the slantwise 
vortex core above the boundary layer. The lower panel of 
Fig. 2 shows the horizontal cross-section of the total vortex 
flow (that is, the sum of the axisymmetric and asymmetric 
parts) at z = 1 km. This horizontal cross-section reveals the 
following distinct features for the total vortex flow: (i) a 
strong cyclonically spiraled downdraft coupled with a weak 
cyclonically spiraled updraft within and around the vortex 
core, (ii) a broadly curved updraft around and ahead (to the 
northeast) of the vortex core, (iii) strong cyclonical rotation 
with strong divergence for the horizontal flow inside and 
around the vortex core, and (iv) continuously strong 
cyclonical rotation but with strong convergence for the 
horizontal flow to the east ahead of the vortex core.  
 The vortex winds retrieved in the sixth analysis time 
window (local time from 15:13 to 15:16) are shown in Fig. 
3. The retrieval is produced by using one volume radial-
velocity scan (on 11 tilts at 0.5o, 0.9o, 1.4o, 1.8o, 2.4o, 3.1o, 
4.0o, 5.1o, 6.4o, 8.0o, 12.5o) from the operational KTLX radar 
and one sector radial-velocity scan (on 6 tilts at 0.5o, 0.9o, 
1.3o, 1.8o, 2.4o, 3.0o). The upper panel of Fig. 3 is a vertical 
cross-section of the axisymmetric part of the vortex flow, 
and this vertical cross-section is intersected along the 
slantwise vortex core shown by the vertical profile of xc(z, t) 
plotted by the red line at the local time of t = 15:13 in Fig. 1. 
As shown by this vertical cross-section, the axisymmetric 
part of the vortex flow in this analysis time window can be 
characterized distinctly by the following features: (i) a nearly 
vertical vortex core with greatly intensified tangential 
velocity over the entire depth of the analysis domain (from z 
= 0 to 5 km), (ii) a lower-level updraft against an upper-level 
downdraft inside the vortex core, and (iii) a broad updraft 
tube outside and around the vortex core above the boundary 
layer. These features are clearly very different from those 
shown by the vertical cross-section in Fig. 2. The lower 
panel of Fig. 3 shows the horizontal cross-section of the total 

vortex flow at z = 1 km. This horizontal cross-section 
reveals the following distinct features for the total vortex 
flow at z = 1 km: (i) highly curved areas of strong updraft 
coupled with weak downdraft within the vortex core, (ii) a 
broadly curved area of updraft around and ahead of the 
vortex core. (iii) greatly intensified cyclonical rotation with 
very strong divergence for the horizontal flow in the area to 
the east and northeast immediately ahead of the vortex core. 
The horizontal flow is strongly convergent in the area to the 
northeast and ahead of the vortex core. In this analysis time 
window, the retrieved wind speed at the surface level (not 
shown) exceeds 65 ms-1 in the 1 km vicinity southeast of 
vortex center. By comparing the vortex winds in Fig. 3 with 
those in Fig. 2, it is easy to see that the vortex winds became 
increasingly intense as the vortex core became increasingly 
vertical from the local time 14:55 to 15:16. 
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Fig. 2. Vortex winds retrieved in the second analysis time 
windows (from local time 14:55 to 14:58) from radial-
velocity observations collected by the operational KTLX 
radar and the NSSL phased-array radar. The upper panel 
shows the vertical cross-section (along the slantwise vortex 
core shown by the red line at local time 14:55 in Fig. 1) of 
the axisymmetric part of vortex winds with the vertical 
circulation plotted by arrows and the tangential velocity 
plotted by contours of every 5 ms-1. The lower panel shows 
the horizontal cross-section at z = 1 km for the total vortex 
winds with the horizontal velocity field plotted by arrows 
and the vertical velocity field plotted by contours of every 5 
ms-1 superimposed on the colored reflectivity field. The color 
scale for reflectivity is shown at the bottom of the figure.  
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Fig. 3. As in Fig. 2, but for vortex winds retrieved in the 
sixth analysis time window (from local time 15:13 to 15:16). 
 
7. Conclusions 
 As an extension of the 2DVar method for retrieving 
tornadic mesocyclone winds from radar observations (Xu et 
al. 2015a), a 3DVar method is developed in this paper to 
retrieve 3D vortex winds of tornadic mesocyclones from 
radar observations in the 4D space. This method has the 
following features: (i) The vortex center is estimated as a 
continuous function of (z, t) in the 4D space from radar 
observations. (ii) The retrieval domain is co-centered and 
moving with the slantwise vortex core at each vertical level. 
(iii) Vortex-flow-dependent background error covariance 
functions are formulated with the mass continuity equation 
and boundary conditions satisfied automatically.  
 The method has been successfully applied to radial-
velocity observations from the operational KTLX and the 
NSSL phased-array radar for the tornadic mesocyclone that 
struck Moore in Oklahoma on 20 May 2013. The retrieved 
vortex wind fields reveal that the mesocyclone vortex core 
became increasingly vertical and the vortex became 
increasingly intense as the mesocyclones moved toward 
Moore. Like the 2DVar method, as shown in Xu et al. 
(2015a), the 3DVar method can be also incorporated into the 
radar wind analysis system (Xu et al. 2015c) as an additional 
step of targeted fine-scale analysis to produce high-
resolution 3D wind fields for storm-scale data assimilation. 
This capability is currently being developed.  
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