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1. Introduction 
 

The Linear Least-Squares Derivative (LLSD; 
Elmore 1994) method is an approach to calculating 
gradients across two-dimensional (2D) radar data. 
Mathematically, an LLSD gradient is represented by 
the slope of the least-squares plane fit to a 
neighborhood of data points. Operational products 
created in the LLSD framework first pass input radar 
data through a median filter (Huang et al. 1979), 
producing a more continuous and “smooth” field to 
analyze. LLSD itself then works to mitigate effects of 
random noise remaining in the data by considering 
surrounding gates. 

The LLSD governing equations (included as a 
system in the Appendix) form the basis of the 
azimuthal (rotational) shear (AzShear; Smith and 
Elmore 2004) product within the National Severe 
Storms Laboratory (NSSL) Multi-Radar Multi-Sensor 
(MRMS) system (Smith et al. 2016). As part of an 
effort to improve the accuracy of AzShear, the LLSD 
equations were re-derived and corrected for previous 
simplifying assumptions (Mahalik et al. 2016). The 
result is a complete and mathematically sound set of 
equations for calculating 2D gradients in a radial data 
field. The system has the capability to incorporate 
dynamic scanning strategies such as Supplemental 
Adaptive Intra-Volume Low-Level Scan (SAILS; 
Chrisman 2013). 

While (at the time of this work) it is operationally 
applied only to the development of AzShear products, 
the relative accuracy and flexibility of LLSD allows it to 
be applied to a wide variety of radar data products. 
This paper presents several examples of how LLSD 
may be applied to radar data and explores the utility 
of the resulting products, many of which remain in an 
experimental state. All examples herein were 
developed using the NSSL Warning Decision Support 
System-Integrated Information (WDSS-II; 
Lakshmanan 2007) developmental software and 
National Weather Service Weather Surveillance 
Radar-1988 Doppler (WSR-88D) data but can also be 
applied to radar data from other sources. 
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2. Across-Azimuth Shear 
 

The azimuthal component of the LLSD technique 
is essentially a method of numerically estimating the 
vertical vorticity equation for the radial component of 
the wind; as such, when calculated across an 
azimuth, it yields one-half of the total vertical vorticity 
(𝜁; Eq. 1), or “half-vorticity,” under the assumption of 
local symmetry. 
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                      (1) 

The slope of the best-fit plane across the radial 
(corresponding to 𝜕𝑥) neglects the along-azimuth (𝜕𝑦) 
component such that only the first term of Eq. 1 
remains, resulting in an expression for half-vorticity. 
This term, the component of the radial velocity (𝑣!) 
derivative across azimuth 𝜃, can be expressed as 𝑢! . 
This calculation is repeated across the entire radial 
velocity field, always along a radial but with the 
neighborhood shifting around the radar site. While this 
procedure strictly produces half-vorticity, the term 
“AzShear” is used interchangeably here since the final 
product has been established by that name. 

AzShear is a popular product used to detect 
rotation. Weak signatures and other non-obvious 
circulations in the traditional radial velocity display are 
often much more easily identified when examining an 
AzShear field (Fig. 1). 
 
3. Along-Azimuth Shear 
 

The same LLSD equations used to calculate 
rotational component of shear can be solved for the 
along-azimuth shear component. This process is 
similar to AzShear calculations, but the slope of the 
best-fit plane is instead computed along the azimuth, 
range-wise. Mathematically, this is the radial 
component of the derivative of 𝑣! , written as 𝑢! , 
yielding an expression for 2D radial half-divergence 
(positive) and half-convergence (negative). The 
resulting product is referred to as LLSD divergent 
shear (DivShear). A wide range of information can be 
gleaned by examining this data. Examples for several 
different storm modes follow. 
 
 
 
 

 



 
 
Fig. 1. 0.5° dealiased Doppler velocity (left) and 0.5° AzShear (right) depiction of a tornadic supercell on 30 Mar 2016 
near Tulsa, OK. The low-level mesocyclone is highlighted as a maximum in AzShear (white). AzShear values 
exceeded the upper bounds of the color table in this case.
 
 

 
 
Fig. 2. 0.5° dealiased Doppler velocity (top) and 0.5° 
Divergent Shear (bottom) depiction of a southward-
moving gust front on 18 Jun 2010 in Central Illinois. 
The gust front appears as strong convergence (blue). 
 

 
 
3a. Gust Fronts/Convergence Lines 
 

Gust fronts are mainly long, narrow regions of 
convergence at the leading edge of advancing, often 
rain-cooled air and are occasionally associated with 
strong, damaging wind gusts. LLSD DivShear 
highlights these features as elongated regions of 
strongly negative divergence. Figure 2 shows an 
example of such a gust front that resulted in severe, 
damaging wind gusts across parts of Iowa, Illinois, 
and Indiana on 18 Jun 2010. The DivShear field not 
only shows the presence of a convergence boundary 
represented by large negative values. Gust fronts can 
also be associated with significant vertical vorticity, 
but DivShear measurements may be used to help 
differentiate them from rotational features. In addition, 
smaller-scale features in the velocity field not obvious 
in the radial velocity field are apparent, including a 
wavelike pattern behind the initial gust front and a 
more heterogeneous field behind the front, indicating 
a more turbulent, gusty flow near the ground. 

The example shown here is a clear, large squall 
line feature, but other convergence boundaries can be 
detected as well, such as thunderstorm outflow gust 
fronts, sea and land breeze boundaries, and dry lines, 
among others, which are often the focus of convective 
initiation. 
 
3b. Supercells 
 

DivShear could also be used to interrogate small-
scale structure of airflow within supercell 
thunderstorms. For example, a classic tornadic 
supercell   is  shown  in  Figure  3,  and  several   well- 



 

 
 
Fig. 3. 0.5° Reflectivity (top) and 0.5° Divergent Shear 
(bottom, with 25 dBZ reflectivity contour in black) 
depiction of a tornadic supercell on 30 Mar 2016 near 
Tulsa, OK.  
 
 
known supercellular features are identifiable. Most 
obvious are areas of strong convergence occurring 
along the southeastern flank of the storm and a region 
of strong divergence within the core of the storm.  

Along the leading edge of the reflectivity hook, 
the convergence may represent the leading edge of 
the rear-flank gust front. An additional area of strong 
convergence directly north of the hook may signify the 
convergence boundary. North of the hook, the region 
of strong convergence may represent the forward 
flank convergence boundary (Beck and Weiss 2013). 

Divergence is commonly observed within 
precipitation cores, as it signals downdrafts (such as 
those induced by negative buoyancy and precipitation 
drag) reaching the surface; in this case, the 
divergence immediately west of the reflectivity hook 
may be associated with the rear-flank downdraft 
(RFD). Interestingly, a small area of divergence near 
the surface can be seen in Figure 2 co-located with 
the EF2 tornado that was occurring at the time. More 
examples must be studied before any definitive 

statement can be made about the appearance of 
tornadoes in a DivShear field. It also remains unclear 
how decreasing horizontal resolution affects the ability 
to resolve these features. 
 
3c. Downbursts 
 

One of the original motivations for calculating 
LLSD shear was to detect damaging downburst 
signatures, which have significant ramifications in 
operational and aviation meteorology (Smith et al. 
2003). A downburst is defined as a thunderstorm 
downdraft that produces a sudden outflow of 
horizontal wind at the surface (Fujita 1981). DivShear 
can be leveraged to detect common characteristics of 
downbursts. Typically, a strong downburst appears as 
a region of strong divergence near the surface as the 
sinking air reaches the ground and spreads radially. 
This is usually preceded by convergence aloft as 
mass converges and descends (Roberts and Wilson 
1989). 

Figure 4 shows an example of a damaging 
downburst generated by a typical thunderstorm in 
Florida. The low-level (0.5° elevation) scan clearly 
shows the divergence maximum associated with the 
downburst (the outflow boundary that initiated the 
convection as it drifted westward is also apparent as a 
narrow, elongated convergence feature). At higher 
altitude, strong convergence is evident at the same 
location in the preceding 10° elevation scan. In this 
case, the low-level radial velocity looks fairly 
unremarkable, but the DivShear field clearly highlights 
areas of interest. This shows the utility of gradient 
products that may be able to pick out features not 
otherwise obvious in the velocity field. These radial 
convergence characteristics are commonly observed 
in such damaging downbursts (like those discussed 
by Roberts and Wilson 1989) and the ability to detect 
them using 2D DivShear field could assist in future 
development of an automated downburst detection 
algorithm. 
 
4. Reflectivity Gradients 
 

While the majority of work to develop LLSD shear 
calculations has focused on radial velocity scans, the 
technique can also be applied to non-velocity radar 
products. For example, reflectivity gradients can be 
derived by applying the same equations but replacing 
𝑣!with reflectivity (Z). When the resulting along- and 
across-azimuth gradients are added, the end product 
is the total, absolute gradient of reflectivity. This has 
the effect of producing a reflectivity “stencil,” outlining 
individual storms or multicell clusters. The product 
highlights any sharp changes in reflectivity, which 
themselves are caused by a myriad of meteorological 
phenomena. For example, a large tornado “debris 
ball”, an important part of the tornado debris signature



 
Fig. 4. Clockwise from top-left: 0.9° dealiased Doppler velocity, 0.5° Reflectivity, 10.0° Divergent Shear, and 0.5° 
Divergent Shear depiction of a damaging downburst and outflow boundary on 24 Aug 2011 near Tampa, FL. The 
downburst is collocated with strong divergence (red) near the ground and convergence (blue) aloft. 

 

 
 
Fig. 5. 0.5° Reflectivity (top) and corresponding LLSD 
reflectivity gradient (“stencil”) depiction (bottom) of a 
tornadic supercell on 20 May 2013 near Moore, OK.  

 
(Ryzhkov et al. 2005), is essentially a reflectivity 
maximum. As shown in Figure 5, a well-defined, 
isolated debris ball will have a notable reflectivity 
gradient surrounding it; thus it is visualized as a 
hollow circle of large gradients. However, this pattern 
is not easily discernable when a tornado is embedded 
heavy precipitation and is surrounded by additional 
high reflectivity. 

Although the utility of reflectivity gradient 
calculations has yet to be explored in depth, this type 
of product may be useful in future storm classification 
or pattern recognition efforts, for example.  

 
5. Summary and Future Work  

 
The examples shown here are a first look at 

applications of the LLSD governing equations beyond 
traditional rotational shear products. The purpose of 
this discussion is to provide an update on ongoing 
work to improve existing LLSD shear products and 
explore potential future products leveraging the LLSD 
framework. It is stressed that the products described 
here exist in their preliminary stage.  

Although the technique is more tolerant of noisy 
data than many other methods of calculating 2D fields 



of radar variable gradients, the ultimate accuracy of 
any algorithm based on LLSD is subject to the quality 
of input radar data. Another consideration is that, as 
with most radar-based quantities, LLSD products tend 
to have a range-based bias, where values change at 
greater distances from the radar due to lower 
resolution from beamspreading. This problem is well-
documented for LLSD AzShear (Mahalik et al. 2016; 
Newman et al. 2013), but its effects on DivShear and 
other gradient calculations have yet to be examined 
quantitatively. 

In addition to a thorough exploration of possible 
failure points, a quantitative analysis of the overall 
performance of these products, including a 
determination of the optimal neighborhood size for 
divergence calculations, will follow. Traditionally, 
LLSD AzShear is calculated using an approximately 
constant window measuring 2500 m x 750 m, but an 
additional analysis must be performed to determine 
the optimal neighborhood size for other quantities. 

Future work will include expanding LLSD 
implementation over spectral width and dual-
polarization variable fields. Ultimately, the gradient 
fields shown here are designed for wider use in a 
variety of future applications, including detection, 
tracking, and trending algorithms. In addition, output 
from LLSD algorithms can add value to ongoing 
analyses. For example, updated LLSD AzShear will 
serve as the basis of a nationwide climatology of low- 
and midlevel storm rotation as part of the Multi-Year 
Reanalysis of Remotely Sensed Storms (MYRORSS; 
Cintineo et al. 2012, Ortega 2015). 

 
6. Acknowledgements 

 
Recognition is deserved for colleagues working 

on various LLSD-related projects, particularly Brandon 
Smith, Travis Smith, Kim Elmore, Darrel Kingfield, and 
Kiel Ortega. Funding for this provided by NOAA/Office 
of Oceanic and Atmospheric Research under NOAA-
University of Oklahoma Cooperative Agreement 
#NA11OAR4320072, U.S. Department of Commerce. 
The statements, findings, conclusions, and 
recommendations are those of the author(s) and do 
not necessarily reflect the views of NOAA or the U.S. 
Department of Commerce. 
 
7. References 
 
Beck, J., and C. Weiss, 2013: An assessment of low-
level baroclinity and vorticity within a simulated 
supercell. Mon. Wea. Rev. 141, 649-669. 
 
Chrisman, J. N., 2013: Dynamic Scanning. Radar 
Operations Center NEXRAD Now, 22, 1-3. [Available 
online at 
http://www.roc.noaa.gov/WSR88D/PublicDoc 
s/NNOW/NNow22c.pdf.] 
 

Cintineo, J., T. Smith, V. Lakshmanan, and S. Ansari, 
2011: An automated system for processing the Multi-
Year Reanalysis of Remotely Sensed Storms 
(MYRORSS). Preprints, 27th Conf. on Interactive 
Information Processing Systems (IIPS), Seattle, WA, 
Amer. Meteor. Soc., J9.3. 
 
Elmore, K. M., E. D. Albo, R. K. Goodrich, and D. J. 
Peters, 1994: NASA/NCAR airborne and ground-
based wind shear studies. Final Rep., Contract 
NCC1-155, 343 pp. 
 
Fujita, T. T., 1981: Tornadoes and downbursts in the 
context of generalized planetary scales. J. Atmos. 
Sci., 38, 1511-1534. 
 
Huang, T., G. Yang, and G. Tang, 1979: A fast two-
dimensional median filtering algorithm. IEEE Trans. 
Acoust., Speech, Signal Process., 27, 13-18. 
 
Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 
2007: The warning decision support system–
integrated information. Wea. Forecasting, 22, 596-
612. 
 
Mahalik, M. C., B. R. Smith, D. M. Kingfield, K. L. 
Ortega, T. M. Smith, and K. L. Elmore, 2016: 
Improving NSSL Azimuthal Shear Calculations Using 
an Updated Derivation and Range-Based Corrections. 
28th Conf. on Severe Local Storms, Portland, OR, 
Amer. Meteor. Soc., 182. 
 
Newman, J. F., V. Lakshmanan, P. L. Heinselman, M. 
B. Richman, and T. M. Smith, 2013: Range-correcting 
azimuthal shear in Doppler radar data. Wea. 
Forecasting, 28, 194-211. 
 
Ortega, K. L., 2015: A radar-based storm climatology 
for the contiguous United States for improved severe 
weather climatologies and warnings. 31st Conf. EIPT, 
Phoenix, AZ, Amer. Meteor. Soc., 10.3. 
 
Roberts, R. D., and J. W. Wilson, 1989: A proposed 
microburst nowcasting procedure using single-
Doppler radar. J. Appl. Meteor. Climatol, 28, 285-303. 
 
Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, & D. S. 
Zrnic, 2005: Polarimetric tornado detection. J. Appl. 
Meteor., 44, 557-570. 
 
Smith, T. M., and K. L. Elmore, 2004: The use of 
radial velocity derivatives to diagnose rotation and 
divergence. Preprints, 11th Conf. on Aviation, Range, 
and Aerospace, Hyannis, MA, Amer. Meteor. Soc., 
P5.6. 
 
 
 



Smith, T. M., K. L. Elmore, and S. A. Dulin, 2003: A 
damaging downburst prediction and detection 
algorithm for the WSR-88D. Wea. Forecasting, 19, 
240-250. 
 
Smith, T. M., and coauthors, 2016: Multi-Radar Multi-
Sensor (MRMS) severe weather and aviation 
products: Initial operating capabilities. Bull. Amer. 
Meteor. Soc., 97, 1617–1630. 
 

 
  



Appendix 
 
Linear-Least Squares Derivative (LLSD) Governing Equations 
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These three equations can be expressed in matrix form as follows, where all summations are over i=0 to i=n. From 
here, the system can be solved for the rotational (𝑢!) and divergent (𝑢!) shear components. 
 

Σ∆r!
! Σ∆r!∆θ!" Σ∆r!

Σ∆r!∆θ!" Σ∆θ!"! Σ∆s!"
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List of Variables 
 
i, j - range and azimuth index for each kernel grid point 

n - number of grid points in the LLSD kernel 

Δr! – range distance from center of LLSD kernel 

Δθ!" – azimuthal distance from center of LLSD kernel 

u! – Across-azimuth component of Doppler radial velocity 

u! – Radial component of Doppler radial velocity 

u! – Non-physical term for the remaining component of Doppler radial velocity 

u!" – Doppler radial velocity measurement at kernel grid point (i, j) 

w!" - local weight at kernel grid point (i, j) 

 


