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ABSTRACT
Summary assessment metrics (SAMs) are defined as the average of
a collection of normalized assessment metrics (NAMs). A normal-
ization based on the empirical c.d.f. (ecdf) is proposed and tested for
two cases. For the OSE case, results are consistent with the conclu-
sions of Boukabara et al. (2016). For the NWP centers case, results
generally agree with our prior assessment of relative forecast skill.

1. Introduction

Standard NWP verification systems generate a mul-
titude of forecast skill metrics, which we will call

∗Extended abstract for the poster presentation of Hoffman
et al. (2017a).
†ross.n.hoffman@noaa.gov

primary assessment metrics (PAMs). Typically,
anomaly correlation (AC) and root mean square er-
ror (RMSE) statistics are PAMs that might be calcu-
lated along several dimensions such as domain, ver-
tical level, variable, forecast length and either verifi-
cation time or initial time, all for a number of treat-
ments. For example the domains might include the
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FIG. 1: Flow chart showing the procedure of calculating PAMs, NAMs, and SAMs. Assessment metrics are
shown as yellow hexagons, processes as grey circles, fixed data sets as orange rounded rectangles, and
the forecast data set as the green rounded rectangle.

Northern Hemisphere extratropics (NHX), the trop-
ics (TRO), and the Southern Hemisphere extratrop-
ics (SHX). The treatments might be different NWP
centers or different experiments (different observ-
ing systems, different model configurations, etc.).
Typically, we want to compare the different metrics
across treatments. In some situations it is desirable
to summarize these metrics and/or to compare the
metrics along one or two of the dimensions listed just
above.

Hoffman et al. (2017b, hereafter HBK) describe
the empirical c.d.f. (ecdf) approach to normalize
PAMs into normalized assessment metrics (NAMs)
so that they may be combined into summary as-
sessment metrics (SAMs). Figure 1 shows the pro-
cess flow from forecasts and verifications to PAMs,
NAMs, and SAMs. Details are given in Section 2.
HBK applied the ecdf approach to the OSE study of
Boukabara et al. (2016, hereafter BGK). In Section
3, we summarize HBK and present some additional
results for the OSE study. In addition the ecdf SAMs
were calculated for 6 NWP centers for 3 months in
2015. These calculations and results are described
in Section 4. A summary and plans for future work
are given in the concluding remarks (Section 5).

2. Methodology

Once PAMs are calculated, there are three principal
steps to calculate NAMs and SAMs (Fig. 1). These
are to define the reference sample, normalize the
PAMs to create the NAMs, and average the NAMs
into SAMs. We summarize these three steps here.
See HBK for details.

a. The reference sample

An example of a reference sample for an OSE or
OSSE is all experiments, all initial times, for NHX AC
for 5-day forecasts of 500 hPa height. Under H0, the
null hypothesis, all the members of a subset are from
the same distribution.

The choice of the reference sample for defining
the ecdf is critical and will depend on the type of ex-
periment. In any use of this approach the sample
must be clearly defined. Types of reference sam-
ples include the self-sample and the historical sam-
ple. The self-sample, is the collection of all cases
(valid times or initial times) and all experiments. Con-
sequently, the average of NAMs and SAMs over the
experiments and cases is 0.5. All results presented
here use the self-sample. The historical sample is
the collection of all cases from the last year or the
last several years close to the same time of year.
The historical sample is preferred for pre-operational
tests of incremental improvements to data assimila-
tion (DA) and forecast systems.

b. Normalization

Each PAM is converted to a NAM that ranges from
0 (poor) to 1 (excellent). The normalization depends
on the subset. The ecdf normalization is proportional
to rank in the reference sample. Under H0, the NAMs
are uniform on [0,1]. The ecdf score for a PAM is the
fraction of cases in the sample, for which this partic-
ular PAM is better. Figure 2 shows the ecdf for 5-day
forecasts of NHX 500 hPa height AC for the OSEs
of BGK, and the normalization for the particular fore-
casts initialized 00 UTC 18 July 2014.

Some previous SAMs include the UKMO NWP in-
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FIG. 2: The ecdf (black curve) and the transforma-
tion from PAMs to NAMs (colored lines) for the fore-
cast initialized 00 UTC 18 July 2014 for each experi-
ment. (After Fig. 2 of HBK.)

dex and the USAF General Operations (GO) index—
both based on weighted sums of (normalized) skill
scores—and the Overall Forecast Score (OFS) of
BGK, which is based on a min-max normalization.
Additional normalizations have been employed in so-
called scorecards where each NAM is plotted graph-
ically, usually in a single tabular array. A scorecard
example is given in HBK, which is an extract of the
ECMWF scorecard comparing IFS cycle 41r2 (Mar
2016) to IFS cycle 41r1 (May 2015) presented by
Hólm et al. (2016). In the ECMWF scorecard the
normalization is based on a t-test confidence inter-
val. See HBK for more details.

c. Averaging

Since the NAMs are comparable, we may average
them over dimensions and values. Under H0, the
averages (SAMs) are approximately Gaussian with
mean 1/2, and variance 1/(12n). Here n is the num-
ber of NAMs if they are independent or an effective
number of NAMs if they are correlated.

In the figures of SAMs, deviations from the ex-
pected value of 0.5 measure the impacts of the dif-
ferent observing system configurations. The larger
the deviation, the larger is the impact. Positive (neg-
ative) impacts correspond to increases (decreases)
in forecast accuracy relative to the null hypothesis

that the experimental treatments have no effect. In
the figures, approximate 5–95% and 1–99% confi-
dence intervals are plotted for the null hypothesis.
These confidence intervals are calculated assuming
that the individual NAMs are independent. This is
not true in practice, but estimating the effective num-
ber of NAMs is difficult.

SAMs might be defined as weighted averages of
NAMs. We have adopted a simple approach of us-
ing all PAMs that are usually assessed individually
for calculating NAMs and SAMs with unit weighting.
The unweighted approach has the advantage of be-
ing both simple and fair, with no attempt to subjec-
tively adjust weights. Of course the individual NAMs
are correlated potentially along most dimensions in-
cluding forecast length, vertical level, etc. For exam-
ple, typical decorrelation intervals for initial times and
forecast times are 12 and 18 h respectively. We ex-
pect that there are correlations to different degrees
between practically all metrics generated. These
correlations are in a sense inherent to the creat-
ing SAMs since the same DA and forecast systems
are the source of an array of PAMs. Correlations
between individual NAMs have a relation to using
weights to calculate the SAMs. In the case with no
weights, any correlations have the effect of giving
additional weight than one should to the correlated
NAMs and lower the effective number of NAMs that
determine the uncertainty of the SAMs.

3. An OSE example

The experimental setup of BGK makes use of
the January 2015 NOAA global operational sys-
tem, which includes Global Forecast System (GFS)
model at T1534L64 resolution and the hybrid, en-
semble Kalman filter/GSI analysis system with 80
ensemble members at T574L64 resolution. Four ob-
serving system configurations are included in the ex-
periments of BGK:

• cntrl: All observing systems used in operations.
This is the best-case experiment.

• 3polar: Retains only one satellite in each pri-
mary orbit (early-AM, mid-AM, PM).

• 3pgps: Like 3polar, but with greatly reduced RO
observations poleward of 24◦.

• 2polar: Like 3polar but without the PM satellite.
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FIG. 3: SAM as a function of experiment alone for
the OSEs. (After Fig. 3 of HBK.)

The reference sample is all initial times for all four
experiments. In calculating the PAMs, the cntrl anal-
ysis is used for verification for all four experiments.
For the OSE example, the PAM dimensions and co-
ordinate values along these dimensions are:

• variables :: geopotential height (HGT), temper-
ature (T), and vector wind (WIND).

• levels :: 250, 500, 700, 850 hPa.

• forecast times :: every 24 hours from 1 to 7
days.

• geographic domains :: NHX, TRO, SHX.

• initial times :: 00 UTC from 25 May until 31 July
2014.

For context, we reproduce two figures from HBK.
Figure 3 shows the overall SAMs for the BGK OSEs,
which confirm the BGK findings that

cntrl > 3polar > 3pgps > 2polar.

In this example all the scores (n > 30, 000) for one
experiment are condensed into a single number. In
the figure, the grey line corresponds to the null hy-
pothesis of no impact. The vertical bar over plotted
each colored symbol shows the 99% confidence in-
terval for the result.
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Fig.	2.	Combined	RMSE	and	ACC	OFS	as	a	funcEon	of	forecast	Eme	for	different	experiments	(colors)	and	
different	levels	(symbols).	
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FIG. 4: SAM as a function of forecast time for differ-
ent levels (symbols) and different experiments (col-
ors) for the OSEs. (After Fig. 4 of HBK.)

Figure 4 plots SAM as a function of forecast time
for different levels and different experiments. In gen-
eral, there are greater impacts for shorter forecast
times. In this OSE examples where initial condition
(IC) errors are different, but model errors are similar,
NWP model error is expected to become dominant
and to tend to mask the impact of the differences in
ICs with increasing forecast time. In Fig. 4, we also
see (out to 72 h) there are greater impacts higher in
the atmosphere, possibly because the data assimi-
lation system extracts more information there.

The next two figures are similar to Fig. 4, but plot
SAMs for different domains and different variables in-
stead of for different vertical levels. In Fig. 5, impacts
are greatest in the SHX and least in the tropics. This
trend is emphasized at short forecast times. In the
SHX, conventional data are not plentiful enough to
moderate the impact of changes in the satellite data
coverage. In the tropics, forecast skill, and hence
the potential for impact, is generally low at longer
forecast times. Note that longer-range forecasts in
the SHX for 2polar are particularly poor compared to
those in the NHX. The situation for 2polar in the SHX
is very data poor. In Fig. 6, wind impacts are greater
than mass field impacts. This is most evident at short
forecast times. This seems counter-intuitive since
satellite data are more directly related to tempera-
ture and hence to geopotential height than wind. It
may be an effect of scale, since there is greater wind
variability at smaller scales compared to the mass
field variables.
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FIG. 5: SAM as a function of forecast time for dif-
ferent domains (symbols) and different experiments
(colors) for the OSEs.

4. NWP centers SAMs

NCEP collects forecasts of other NWP centers and
routinely calculates PAMs. Here, we use the Cana-
dian (CMC), European (ECM), U.S. Navy (FNO),
NCEP (GFS), Indian (NCMRWF), and United King-
dom (UKM) NWP centers PAMs. Each center’s
analysis is used for verification. We retrieved the
archived VSDB data sets for 2015. These contain
the sums needed to calculate various PAMs, includ-
ing AC and RMSE. For this study, the reference
sample is all initial times for all centers, month by
month and the PAM dimensions and coordinate val-
ues along these dimensions are:

• variables :: HGT, T, WIND.

• levels :: 250, 500, 700, 850, 1000 hPa.

• forecast times :: every 24 hours from 1 to 6
days.

• geographic domains :: NHX, TRO, SHX.

• valid times :: 00 UTC from 01 until 31 of each
month in 2015.

Figure 7 shows the combined SAMs by month for
different NWP centers. Overall

ECM > GFS ∼ UKM > CMC ∼ FNO > NCMRWF.

Clearly the month-to-month variation is small. Note
that for combining AC and RMSE SAMs, a weight of
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FIG. 6: SAM as a function of forecast time for dif-
ferent variables (symbols) and different experiments
(colors) for the OSEs.
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FIG. 7: The combined SAMs by month (symbols and
colors) for different NWP centers.

2/5 is given to the AC SAM and 3/5 to the RMSE
SAM. This is done because for AC we only have
VSDB data for 10 of the 15 possible variable-level
combinations. (By default, there are no VSDB en-
tries to calculate AC for HGT(P850), T(P700,P1000),
and WIND(P700,P1000).)

The remaining figures are for January only, and
with one exception for RMSE SAMs only. The un-
certainty bounds presented are consistent with a null
hypothesis that all the NAMs are independent draws
from a uniform (0,1) distribution. To put bounds
on the effective sample size, consider that Fig. 7
shows that the month-to-month variation of overall
ecdf SAMs is on the order of 0.025. This puts an up-
per bound on the sampling uncertainty of the individ-
ual monthly values, since the uncertainty in Fig. 7 in-
cludes both sampling error and real month-to-month
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FIG. 8: January RMSE (top) and AC (bottom) SAMs
as a function of forecast time for different NWP cen-
ters.

variation. The formal 1-σ uncertainty (not plotted) is
order of 0.0025 (for n=13950). If we assume all the
uncertainty in Fig. 7 is due to sampling uncertainty,
then we should increase the formal uncertainty by a
factor of 10, or equivalently, we should reduce the
effective sample size by a factor of 100. This ad-
justment would be smaller for subsets. For example,
SAMs for a single vertical level, require no adjust-
ments for vertical correlations.

Figure 8 shows January RMSE and AC SAMs as
functions of forecast time for different NWP centers.
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FIG. 9: January RMSE SAMs versus domain for dif-
ferent NWP centers.
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FIG. 10: January RMSE SAMs versus variable for
different NWP centers.
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FIG. 11: January RMSE SAMs versus pressure level
for different NWP centers.

There is a tendency for the extreme score to tighten
up with time. For example, ECM drops from 0.8 to
0.55 and NCMRWF increases from 0.25 to 0.45 as
the effect of IC errors lessens. Models that improve
relative to others over time likely have smaller model
errors (GFS, NCMRWF). Comparing AC to RMSE,
UKM and CMC do better in terms of AC, FNO does
worse. Figure 9 shows January RMSE SAMs versus
domain for different NWP centers. GFS is quite good
in the tropics, but not in the SHX, where UKM is bet-
ter. Figure 10 shows January RMSE SAMs versus
variable for different NWP centers. Note that UKM is
poor for T compared to HGT and WIND. Figure 11
shows January RMSE SAMs versus pressure level
for different NWP centers. Note that FNO does con-
siderably better in the lower atmosphere, especially
at 850 hPa than at higher levels. Figure 12 shows
January AC SAM versus valid time for different NWP
centers. Note that there is a general dropout in fore-
cast skill around 20 January 2015 for all centers.
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FIG. 12: January RMSE SAMs versus valid time for
different NWP centers.

5. Concluding remarks

a. Summary

Summary assessment metrics (SAMs) are defined
as the average of a collection of normalized assess-
ment metrics (NAMs). A normalization based on the
empirical c.d.f. (ecdf) is proposed and tested for two
cases. An advantage of the ecdf approach is that it is
amenable to statistical significance testing. The ecdf
SAMs are relatively easy to interpret since the met-
rics for various subsets vary relatively consistently.
For the OSE case, results are consistent with the
conclusions of BGK. For the NWP centers case, re-
sults generally agree with our prior assessment of
relative forecast skill. There are some interesting
detailed findings for the NWP centers case. For ex-
ample, UKM does poorly at forecasting temperature
compared to geopotential and wind and FNO is best
at forecasting at 850 hPa.

b. Future work

We plan to extend our work with the NWP centers
PAMs. First, to treat all of 2015, we will experiment
with different ways to account for annual cycle in skill,
including putting everything into one reference sam-
ple, using a moving window reference sample (e.g.,
use the three months centered on a given month),
and applying the SAM calculation to skill differences.
Second, we would like to extend this analysis to 2016
and beyond. Third, we will apply the ecdf normaliza-
tion to other metrics, such as the absolute value of
the mean error (AME). Fourth, we will consider the
possibility of extending the work to weighted SAMs.
Fifth, we will develop approaches to estimate the ef-
fective sample size in order to refine our estimates

of uncertainty. See the conclusions of HBK for addi-
tional discussion of some of these future directions.

Acknowledgement Financial support for this work
is gratefully acknowledged, including funding pro-
vided by the Disaster Relief Appropriations Act of
2013 (H.R. 152).

References

Boukabara, S.-A., K. Garrett, and V. K. Kumar,
2016: Potential gaps in the satellite observing sys-
tem coverage: Assessment of impact on NOAA’s
numerical weather prediction overall skills. Mon.
Wea. Rev., 144, 2547–2563, doi:10.1175/MWR-
D-16-0013.1.

Hoffman, R. N., S. A. Boukabara, V. K. Kumar,
K. Garrett, S. Casey, and R. Atlas, 2017a: A
non-parametric definition of summary NWP fore-
cast assessment metrics. 28th Conference on
Weather Analysis and Forecasting/24th Confer-
ence on Numerical Weather Prediction, American
Meteorological Society, Boston, MA, Seat-
tle, Washington, poster 618. Available online at
https://ams.confex.com/ams/97Annual/webprogram/
Paper309748.html.

Hoffman, R. N., S.-A. Boukabara, V. K. Kumar,
K. Garrett, S. P. F. Casey, and R. Atlas, 2017b: An
empirical cumulative density function approach to
defining summary NWP forecast assessment met-
rics. Mon. Wea. Rev., in press. doi:10.1175/MWR-
D-16-0271.1.

Hólm, E., R. Forbes, S. Lang, L. Magnusson, and
S. Malardel, 2016: New model cycle brings higher
resolution. ECMWF Newsletter , Spring (147), 14–
19.

7


