1.4 CHARACTERISTICS ANALYSIS AND INFLUENCE OF ENVIRONMENTAL VARIABILITY ON IDEALIZED SIMULATIONS FOR A LONG-LIVED BOW ECHO WITH HIGH PRECINCTAGE OF POSITIVE CLOUD-TO-GROUND LIGHTNING

DAI Jianhua*, TAO Lan, SUN Min
Shanghai Central Meteorological Observatory, Shanghai, China
YUAN Zhachong
Shanghai Meteorological Service, Shanghai, China

1. INTRODUCTION

On 5 June 2009, there was a high level cold vortex that was abnormally strong and stable during the month of June over the Northeast China (Fig. 1). Central of the east China region was behind a aloft trough. High level jets at the south-west part of the vortex brought strong cold advection that lowered down the freezing level and increased lapse rate (instability) and vertical wind shear. It is one of five synoptic conceptual models of severe convection in this region, with a dry and unstable environment (Sun et al., 2014).

![Fig. 1 Synoptic analysis of 08:00(JST) 500 hPa (trough with brown, previous trough with orange, and temperature change in last 24 hours with shaded sky-blue) on Jun 5, 2009. (Soundings: XZ-Xuzhou, BS-Baoshan)](image1)

A Mesoscale Convective System (MCS) was triggered just underneath the high-level north-westerly jets and along low-level convergence line in the central Jiangsu Province (Fig. 2). It lasted for about 10 hours with a bow echo during its mature stage. The MCS brought widely large hail stones and strong straight-line winds for Jiangsu Province, Shanghai, and Zhejiang Province in the East China region. Several studies (Yin et al., 2010; Dai et al., 2012) have focused on this MCS and a supercell ahead of the MCS.

The MCS was dominated by positive cloud-to-ground (CG) lightning flashes (percentage over 66%) rather than negative CG lightning flashes at the early stages, which was much higher than most of other MCSs (MacGorman et al., 1989; MacGorman and Nielsen, 1991; Makowski et al., 2013).

![Fig. 2 Base reflectivity (in dBZ) from the 0.5° scan of the Shanghai WSR-88D, 07:04Z June 5, 2009. CG lightning flashes were observed in MCSs or severe thunderstorms and studied by many studies (Rust et al., 1981; MacGroman, 1988; Rutledge and MacGorman, 1988; Reap and MacGroman, 1989; Williams et al., 1989; Engholm et al. 1990; Saunders et al., 1991; Knapp, 1994; Parker and Johnson, 2001). At the same time, many studies have focused on positive CGs (Rust et al. 1981; MacGroman 1988; Engholm et al. 1990; Saunders et al., 1991; Morrison et al., 2009). Many positive flashes discharge at upper levels in the anvil severe storms by the advection of positive charge from the major convection regions or at those area adjacent to convective storms which are associated with a local tilted electrical dipole. In the stratiform precipitation regions of MCSs, some positive flashes are caused by the advection of positive charge from the upper levels of the convective portions of the storm. However, an additional class of positive ground flashes are associated with the generation of charge by stratiform precipitation processes, specifically related to ice-ice interactions in regions of low supercooled liquid water contents. In some severe thunderstorms, an inverted-polarity structure is found with positive graupel charging occurs at temperatures above a “charge sign reversal temperature”, and the reversal temperature moves to lower temperatures when the liquid water content is increased.]

*Corresponding author address: Jianhua Dui, Shanghai Central Meteorological Observatory, Shanghai 200030, China; e-mail: djhnn@sina.com.
Some MCSs were found with a bow-shaped echo and long-lived (Bluestein and Jain, 1985; John and Hirt, 1987; Przybylinski R W. 1995). In this study, the horizontal and vertical structure of the bow echo is analyzed using weather Doppler radars. The reasons of dominant CG polarity change during this squall line’s evolution are discussed. In order to investigate the environmental influence on the development and evolution of this squall line, idealized simulations using a WRF meso-scale numerical weather prediction (NWP) model are made (Yuan, 2015; NCAR), according to five schemes by modifying the near-storm environmental sounding data.

2. EVOLUTION OF THE MCS

2.1 Formation and Development

Some thunderstorm cells initiated in the central Jiangsu Province at noon and started to merger together as a MCS at about 14:00 (06:00Z). After formation, the area the MCS was increasing significantly. Then, the MCS gradually developed as a bow echo after passing through the Yangtze River (Fig. 3). This MCS also showed some characteristics of a squall line on radar images, such as a MARC (mid-altitude radial convergence) and a RIJ (rear inflow jet) (Fuquay 1982; Weisman 1982; Smull and Houze, 1987).

2.2 CG Lightning Activity

During the formation and development of the MCS, cloud-to-ground lightning activity was detected by the China Meteorological Administration (CMA) lightning detection network (ADTD). Positive CG lightning dominated in its early stages (Fig. 3a and Fig. 3b), while after it organized well negative CG lightning burst out (Fig. 3c). Positive flashes were found associated with the strong cells of the MCS in the early stages, which reveals that an inverted-polarity structure with positive graupel charging might occur at temperatures above a ‘charge sign reversal temperature’ (Saunders et al., 1991). When negative flashes burst out along the major part of the bow echo, few positive flashes only were found at stratiform regions of the MCS indicating that positive ground flashes were caused by the advection of positive charge from the major convective region (MacGorman 1988; Engholm et al. 1990).

2.3 Reason Analysis of High Positive CG Ratio

Radar reflectivity cross section with heights of the freezing level and -20 ℃ are compared to investigate the vertical structure of the MCS and the possible micro-physics processes and charging mechanisms. PPCG (Percentage of Positive CG lightning) is also calculated.

During the early stages of the MCS lifecycle, several strong storms with some supercell signs (e.g., meso-cyclone and weak echo region) developed and merged together, with surface reports of hails and downbursts. Cross sections show the strong reflectivity cores were above -20 ℃ level with high possibility of large hail (Fig 4a). Nearly 80% of CG lightning flashes were positive.

Hall and an hour later, MCS’s size enlarged and its PPCG was still in the high level over 60% (Fig 4b). The cell at south-west part of MCS was the highest and strongest. Some negative CG flashes were found at the north-east part of the MCS where storms were weakening. At 07:05Z (Figure not shown), the major part of MCS developed as a bow echo with high positive CG ratio. After that, the PPCG started to go down from 60% as more negative CGs observed just behind the major convective line.

At 07:29Z (Fig. 4c), along the well-developed bow echo, the elevated strong reflectivity had been descending. Strong straight winds were found at the
area bow echo passing. Many negative CGs were detected along the bow echo. The PPCG dropped dramatically down to below 20% and most of positive flashes were found in the stratiform regions or new cells.

Around 08:00 UTC (Fig. 4d), the vertical cores of the most of cells along the bow echo fell down below the -20°C level and negative CGs dominated with a PPCG below 10%. At the same time, however, there were some tall cells developing with strong reflectivity over 55dBZ above the -20°C level at the southwest end of the MCS. After that, positive flashes were detected in new cells in the south-west part.

Fig. 4 Nantong PPI and cross section display of reflectivity (dBZ) with heights of the freezing level and -20°C, and 6-min ADTD CG lightning flashes (blue + denotes for positive, and black - for negative) at a) 04:59Z, b) 06:29Z, c) 07:29Z, and d) 07:59Z, on June 5, 2009

Fig. 5 Time series of 6-min the maximum Vertically Integrated Liquid (VIL), the area of VIL exceeding 45 kg/m², and positive, negative, and total CG lightning flashes and PPCG. The PPCG was over 60% in the early stages and dropped rapidly after 07:00Z down to 5% at 08:00Z. The area of VIL of MCS above 45 kg/m² peaked 30-60 min before the lightning polarity suddenly changed.

Fig. 5 shows time series of 6-min the maximum Vertically Integrated Liquid (VIL), the area of VIL exceeding 45 kg/m², and positive, negative, and total CG lightning flashes and PPCG. The PPCG was
Fig. 6 Base radial velocity (left) and vertical cross section of velocity (right) along the yellow dotted line at left panel at 08:36Z show a descending rear to front inflow jet.

Fig. 6 shows a descending rear inflow jet of the MCS when low level vertical wind shear and was not strong enough to elevated it.

The cross sections of the Dual-Doppler radar retrieval winds (Fig. 7) along the MCS’s axis are shown for 0630Z and 0730Z. When PPCG was as high as 70-90% at 0630Z updrafts dominated in the MCS, while PPCG started to drop when downdrafts started at 0700Z (not shown). When the RIJ with the downdrafts reached surface, nearly 90% of CGs were negative at 0730Z (Fig. 7).

Fig. 6 shows a descending rear inflow jet of the MCS when low level vertical wind shear and was not strong enough to elevated it.

The cross sections of the Dual-Doppler radar retrieval winds (Fig. 7) along the MCS’s axis are shown for 0630Z and 0730Z. When PPCG was as high as 70-90% at 0630Z updrafts dominated in the MCS, while PPCG started to drop when downdrafts started at 0700Z (not shown). When the RIJ with the downdrafts reached surface, nearly 90% of CGs were negative at 0730Z (Fig. 7).

3. NEAR-STORM ENVIRONMENT ANALYSES AND COMPARISONS

Environment factors are compared for the initiation phase and mature phase of the MCS using two radiosond stations: 1) the Xuzhou sounding station (XZ in Fig. 1) which was located at upstream of the MCS initiated; and 2) the Baoshan sounding station (BS in Fig. 1) which was close to where the bow echo formed with the burst of negative CG lightning flashes. The 06Z Xuzhou sounding is modified by changing surface temperature and dew-point using 06Z surface reports representing the environment of the initiation and evolution of the early stages of the MCS with a abnormally high positive CG lightning ratio. The 06Z Baoshan sounding released 2-hr prior to the MCS arrival can be used to represent the environment during the mature stages of MCS, especially for the period with a rapid change of predominated CG lightning polarity form positive to negative.

Fig. 8 shows the comparisons between these two soundings. Both of these soundings have mid-convective available potential energy and weak-to-mid 0-6km wind shear relative to other strong and long-lived MCSs (Evans and Doswell, 2001; Coniglio et al., 2004; Cohen et al., 2007). The positive-CG cells occurred in the environment (Fig. 8 left panel) with dryer low levels, higher lifted condensation level (LCL), thinner warm cloud depth (WCD), larger instability (low-level lapse rate) and bigger 0-6km and 0-3km wind shears than those of the negative-CG predominated MCS (Fig. 8 right panel) (Williams et al. 2005; Carey and Buffalo 2007).

Some studies on lightning microphysics (Takahashi, 1978; Knapp, 1994; Williams et al., 2005; Carey and Buffalo, 2007) show that larger cloud water concentrations in the mixed phase region via the non-inductive charging (NIC) mechanism will be a favorable condition for the positive charging of large ice particles that may result in thunderclouds with a reversed polarity of the main cloud dipole. Graupel concentrations in the lower
part of the updraft’s mixed-phase region can gain a positive charge by noninductive charge exchange with cloud ice in a classical tripole charge distribution. This situation will be less relative to graupel concentrations in the updrafts of storms with a warmer cloud base. The lower positive charge carried by graupel would be similarly reduced.

Environment conditions for this situation are associated with an elevated cloud base height (CBH) (low sub-cloud moisture) and shallow warm-cloud depth (WCD). Broad and intense updrafts (CAPE - convective available potential energy) and LFC (level of free convection) significantly increases and LHLW (lower liquid water) lowers down (Fig. 9d and Fig. 9e).

increased, CAPE significantly increases and LFC lowers down (Fig. 9d and Fig. 9e). When the moisture at mid-levels being increased, the horizontal size of MCS is smaller than that of the control run, which reveals that moist mid-levels will decrease the entrainment of mid-level dry air and diminish the evaporative cooling potential to lower downdrafts. As a feedback, the weakening interaction between the cool pool and ambient wind shear will make the size of MCS smaller.

Table 1. Idealized simulation schemes

<table>
<thead>
<tr>
<th>ID</th>
<th>Scheme</th>
<th>Sounding Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>Control run</td>
<td>none</td>
</tr>
<tr>
<td>LLR</td>
<td>Lower lapse rate</td>
<td>decreased T850hPa and increased T500hPa and 300hPa</td>
</tr>
<tr>
<td>MML</td>
<td>Moist mid-level</td>
<td>increased dew point between 400 and 600 hPa</td>
</tr>
<tr>
<td>EMBL</td>
<td>Extremely moist boundary</td>
<td>dramatically increased dew point between surface and 925hPa (+8℃ and +6℃)</td>
</tr>
<tr>
<td>MBL</td>
<td>moist boundary layer</td>
<td>increased dew point between surface and 925hPa (-6℃ and +3℃)</td>
</tr>
<tr>
<td>LHLW</td>
<td>Lower high-level winds</td>
<td>decreased wind speed between 300 and 500hPa</td>
</tr>
</tbody>
</table>

4. IDEALIZED SIMULATIONS

In order to investigate environmental factors on influence of the MCS initiation and evolution as well as the high positive CG flash ratio in its early stages, idealized simulations using a WRF NWP model are made according to five schemes on modifying the convective parameters of the near-storm environmental sounding data, such as temperature lapse rate, low-level and mid-level humidity, and vertical wind shear (Yuan, 2015; NCAR).

4.1 Idealized Simulation Setup

The control run of the idealized simulation is based on the 06Z Baoshan sounding. Other five runs are setup by modifying some environmental factors. They are LLR (lower lapse rate), MML (moist mid-level), EMBL (extremely moist boundary layer), MBL (moist boundary layer ), and LHLW (lower high-level winds). Detailed setup information of the five schemes are listed in Table 1.

Fig. 9b-f show the idealized soundings compared to the control run (Fig. 9a). The environment shows a much higher LFC (level of free convection) and a smaller CAPE with a decreased lapse rate between 850hPa and 500hPa indicating mid-to-low level instability is crucial to thunderstorm initiation and development. The moist middle-level sounding (Fig. 9c) does not show any difference to most of convective indices, however, the convective instability is smaller due to the increase of moisture at mid-levels. When the moisture at boundary layer is increased, CAPE significantly increases and LFC lowers down (Fig. 9d and Fig. 9e).

4.2 Simulation Results

The simulation results, 2km-height reflectivity and wind vectors are shown in Fig. 10a-f. The control run (Fig. 10a) shows a bow echo which is similar to the observations (Fig. 2). Under an lower lapse rate environment, no convection is found in Fig. 10b. On moisture at mid-levels being increased, the horizontal size of MCS is smaller than that of the control run, which reveals that moist mid-levels will decrease the entrainment of mid-level dry air and diminish the evaporative cooling potential to lower downdrafts. As a feedback, the weakening interaction between the cool pool and ambient wind shear will make the size of MCS smaller.
boundary layer moisture is increased properly, larger CAPE will transfer to strong updrafts to make the size of MCS larger and the downdrafts stronger than the control run (Fig. 10e).

Fig. 10 the same as Fig. 9, except for reflectivity fields and wind vectors at the level of 2-km height by the WRF idealized simulations

Fig. 11 Idealized model simulations of cross sections of wind vectors (m/s) with a) and d) reflectivity (dBZ), b) and e) graupel mixing ratio (kg/kg), and c) and f) rain water mixing ratio (kg/kg), along the axis of the MCS (the red line in Fig. 10) using the simulation schemes of a) to c) observed sounding data and d) to f) moist middle-level
When the surface to mid-level wind shear is lowered down by decreasing mid-level winds, the balance between cool pool and ambient wind shear is destroyed. As a result, new cells only initiate and develop close to the axis of the bow echo and the horizontal size of the MCS is much smaller than the others (Fig. 10f).

Fig. 11 compares two schemes of simulation, the control run and the moist boundary layer, using cross sections of graupel mixing ratio and rain water mixing ratio. Most boundary layer is found a larger warm cloud depth and lower cloud base height (Carey and Buffalo, 2007) and has much smaller probability of positive CG flash. When the MCS passed through the Yangtze river from dryer environment, the positive CGs predominated MCS transformed to a negative CGs predominated MCS due to a different lightning charging mechanism occurred in a new environment.

5. CONCLUSIONS AND DISCUSSIONS

A long-lived squall line with a bow echo occurred under a dry and unstable environment is analyzed using weather Doppler radars. The squall line showed some typical structural characteristics of bow echo, such as a mid-altitude radial convergence and a downward-sloping rear inflow jet. The bow echo was dominated by positive cloud-to-ground (CG) lightning flashes (percentage over 66%) rather than negative CG lightning flashes at the early stages. At its mature stage, burst of negative CG flashes were found in the major convection areas. The dominant positive CG lightning polarity was associated with rapid updraft intensification stages of the bow echo, and dominant negative CG with updraft weakening.

Idealized simulation results show: 1) the increasing lapse rate caused by the strong cold advection aloft over the warm advection at low levels was the crucial factor of a large convective energy or strong updrafts for this convection system. Warmer ambient air could enlarge the temperature difference between downdrafts and environment. 2) The rapid increase of boundary humidity was the major cause of this deep convection case by providing a lower LFC and a larger CAPE. 3) Dry layers at mid-levels and low-levels provided evaporative cooling potential to enlarge downdrafts (James et al., 2006).

The vertical and horizontal size of the MCS were sensitive to the strong vertical shear created by the high-level jets (based on model simulations). Along the squall line’s motion axis, strong surface to high-level vertical wind shear interacted with the cold pool to enhance the lifting at the leading edge of the convective system, which made the squall line live longer (Thorpe et al., 1982; Weisman et al., 1988; Rotunno et al., 1988; Xue, 1990). On the other hand, the medium-to-weak vertical wind shear at low levels made a downward-sloping rear inflow jet which spread out along the surface and caused widely distributed strong wind gusts (Fugay 1982; Weisman 1982).

Based model simulations and sounding comparisons, high cloud base and shallow warm-cloud layer can be the major cause of this high positive CG ratio MCS. The results are similar to other studies, such as, storms with a high cloud base and a resulting shallow layer for warm rain processes will shift precipitation growth to colder altitudes than found in storms with a warmer cloud base (Williams et al., 2005; Carey and Buffalo 2007). Future studies are planned to focus on micro-physics processes of high positive CG lightning flash ratio in a MCS.

6. REFERENCES


Rutledge S. A., and D. R. MacGorman,1988:
Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations and severe local storms, Mon. Wea. Rev., 117, 518-535.


Rutledge, S. A., and D. R. MacGorman,1988:


Thorpe A J, M J Miller, and M W Moncrieff. 1982:

Weisman M L, Klemp J B, and Rotunno R. 1988:


