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1. INTRODUCTION
The rapid development of various observation

techniques has made great contributions to the

improvement of weather forecast technology. With the

capacity to provide meteorological observation data

covering the whole regions, meteorological satellite has

been playing an important role in the areas of weather

analysis and forecast, climate research, environment

monitoring, disaster prevention and mitigation, etc.

Among all the research contents, how to obtain

atmospheric temperature and moisture information from

satellite observation data is one of the critical issue in the

field of remote sensing (Zhang et al., 2014). The obtaining

process, which is the so called retrieval, can be divided

into physical and statistical according to the methodology

it uses. physical and statistical retrieval methods both

have advantages and disadvantages when considering

the performance and computational complexity.

Due to the timeliness and implementation simplicity,

statistical regression is widely used as a kind of statistical

retrieval method. In this paper, we will focus on other

statistical retrieval methods: support vector

regression(SVR) and neural network(NN), along with

statistical regression. Experiments were carried out based

on FY3 satellite observations and ERA-Interim’s

temperature and moisture profiles. Results indicated that,

in terms of retrieval precision, neural network and support

vector regression both are much better then statistical

regression.

2. DATAAND METHODOLOGY
Assuming the vector composed by satellite
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observations and other information such as satellite

scanning angle as the forecast factor x , and the
temperature and moisture profiles to be retrieved as y .

Statistical retrieval methods usually establish a function
φ(x)y  between x and y , and φ is obtained

based on a prepared training data set
T

mx,x,xX ][ 21  and T
my,y,yY ][ 21  . The data

set of FY3 and ERA-Interim from Nov. 19th, 2014 to Nov.

20th, 2014 is treated as the training data, while the data

set of Nov. 21st is used for validation. Depending on

different kinds of weather situations and underlying

surface, those data are divided into 5 kinds: ocean,

clear sky; ocean, cloudy, no rain; ocean, rainy; land,

clear sky; land, cloudy. The difference between each

statistical retrieval methods are the ways they use to
obtain φ . In the next part we will discuss the

fundamental of three methods: statistical regression,

neural network, and support vector regression

respectively.

2.1 Statistical Regression
Statistical regression method (linear) establishes

a linear relationship between x and y : Αxy  . Α

is calculated by solving an optimization problem:
2||||min F

TT YΑX  (1)

It’s easy to know that the solution to this problem is:
1)(  XXXYΑ TT (2)

Smith and Wolf (1976) came up with an improved

method based on the eigenvectors of covariance matrix

of the training set. This method can reduce the

dimension and the illness caused by the correlation

between different channels. Assuming M is the

covariance matrix of X , U is the matrix composed

by several eigenvectors of M (eigenvectors of some
of the largest eigenvalues), and UXXZ )(  , where
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between x and y is:

)( xxΑUyy  T (4)

the same process also can be taken on Y to reduce the

dimension and correlation of the parameters to be

retrieved.

2.2 Neural Network
Neural network is composed of large numbers of

artificial neurons. Each artificial neuron accepts inputs

nxxx ,...,, 21 from other neurons, and each input has a

corresponding weight iw . The output y can be

expressed by the following equation:
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where T
n bwww ),,...,,( 21w , T

nxxx )1,,...,,( 21x , b

is a threshold, f is the activation function. One of the

most popular neural network is the back propagation

neural network, which stacks several layers of artificial

neurons together. Each layer accepts the outputs of the

previous layer as inputs and transmits the calculated data

to the next layer. Assuming W is the vector composed

by all weights, B is the vector composed by all

thresholds. F is the whole neural network, the training

process of the neural network can be considered as

solving an optimization problem:

||)(||min
,

YBW,X,F
BW
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where X and Y are the training input and output

respectively. This problem can be solved with the back

propagation algorithm, which is the origin of this neural

network’s name. Hornik (1989) demonstrated that three

layers BP neural network can simulate any continuous,

bounded input-output mapping to an arbitrary degree of

accuracy. But we don’t know how many neurons the

network needed, and more layers has a natural

advantage when simulating complex nonlinear

mappings. For choosing the number of neurons, one

strategy is to set few neurons at first, then gradually

increase the number and analysis the performance of

the network on a fixed training set, there are also some

empirical formulas such as ann  21 , where 1n

and 2n are the numbers of neurons of the input and

output layer, respectively, a is a constant between 1

and 10.

2.3 Support Vector Regression
The basic principle of support vector regression is

to maximize the generalization ability when it satisfies

the preset regression accuracy. Assuming the training
set is miyii ,...,1,2),,( x .  is a preset accuracy.

Then the linear regression problem can be seen as to

obtain a hyperplane, which satisfies:

miyb ii
T ,...,1,2,||  xw (7)

because the distance between point ),( 00 yx and

hyperplane by T  xw is

2
200 ||||1/|| wxw  ybT , so if we want more points

satisfy (7) in practical application, function 2
2||||min w

can be set as the objective function. Thus we obtain an

optimization problem:
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where C is a parameter, miii ,...,1,20,0 *  , are

slack variables. This problem is not easy to solve, but

Cristianini and Shawe-Taylor (2000) demonstrated that

it is equivalent to it’s dual problem:
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and this problem can be efficiently solved by sequential

minimal optimization algorithm (Platt, 1998). The dual

problem also has another advantages: input vectors x
are always in the form of inner product  ji xx , , This

feature is the key point of using kernel function. All of the

above are talking about the linear regression, when it

comes to the nonlinear case, one direct approach is
mapping the input data mxxx ,...,, 21 into a high

dimensional feature space (Hilbert space)
)(),...,(),( 21 mxxx  , then the problem comes back

to the linear case. But )( ix usually has a very high

dimension which makes the problem very complicate,

even unable to solve. Fortunately, there is a kind of

function called kernel function which satisfies
 )(),(),( 21 xxxx jiK , thus the dimension

explosion problem can be solved perfectly, we can keep

the idea of mapping data into high dimensional space, but

all the calculations are just done in the original space.

There are some popular used kernel functions, for

example: polynomial kernel function
dK )1,(),( 2121  xxxx , Gauss kernel function

))2/(||||exp(),( 22
2121 xxxx K .

3. RESULTS
In the experiment of neural network, we considered

two kinds of network structure: one hidden layer and two

hidden layers. For the one hidden layer network, we use

20 hidden nodes, and for the two hidden layers network,

we use 15 and 5 hidden nodes for each layer, respectively.

Fig.1 and Fig.2 show the RMSE of retrieved temperature

and moisture profiles under these two network structures

with a clear sky on land and on ocean respectively. From

Fig.1 and Fig.2 we can know that when retrieving

temperature profiles, single hidden layer and two hidden

layers have about the same effect. But when it comes

to the moisture profiles which have a high nonlinearity,

two hidden layers is obviously superior to single hidden

layer.

Fig.3 shows the comparison of these three

methods on ocean with a clear sky (for the neural

network we use two hidden layers). As you can see,

when retrieving temperature profiles, the RMSE

distribution of neural network and support vector

regression are almost the same, while retrieving

moisture profiles, neural network has a better precision.

And these two methods both are much more better then

statistical regression. Fig.4 shows the comparison of

these three methods on land with a clear sky. From

Fig.4 we can see that both neural network and support

vector regression have a similar RMSE distribution of

retrieved temperature and moisture profiles. For

temperature profiles, these two methods are superior to

statistical regression to a certain extent. For moisture

profiles, these two methods are much more better then

statistical regression.

Table.1 shows the average RMSE of retrieved

temperature and moisture profiles of all layers. From

Table.1 we can see that neural network and support

vector regression both have a better performance

compared with statistical regression under each

condition, which provides new ways for operational use.

4. SUMMARY
In this paper we briefly narrated the principle of

three statistical retrieval methods: statistical regression,

neural network, and support vector regression.

Experiments are carried out using FY3 observations

and ERA-interim’s profile data to test and compare

these three methods. Results indicated that: 1. for

neural network method, two hidden layers performs

better in retrieving moisture profiles then one hidden

layer, while in retrieving temperature profiles, they both

have a similar effect; 2. neural network and support

vector regression both are much more better then

statistical regression under all weather and underlying

conditions.

But neural network and support vector regression



also have disadvantages, their performance depend on

the parameters to a large extent, the parameters should

be choosing carefully. Our future work will concentrate on

the sensitivity to parameters and ways to choose the

parameters.
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Figure 1. RMSE of retrieved temperature and moisture profiles on land with a clear sky under two network

structures.
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Figure 2. RMSE of retrieved temperature and moisture profiles on ocean with a clear sky under two network

structures.
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Figure 3. RMSE of retrieved temperature and moisture profiles on ocean with a clear sky under three methods.
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Figure 4. RMSE of retrieved temperature and moisture profiles on land with a clear sky under three methods.



Table 1. Average RMSE of temperature and moisture profiles of three methods under all conditions

Average RMSE of

temperature profiles（K）

Average RMSE of

moisture profiles (%)

Ocean, clear sky Statistical regression 1.50 27.0

NN 1.33 17.4

SVR 1.30 20.2

Ocean, cloudy, no

rain

Statistical regression 1.70 32.4

NN 1.45 20.6

SVR 1.36 23.7

Ocean, rainy Statistical regression 1.80 54.3

NN 1.46 29.7

SVR 1.40 24.7

Land, clear sky Statistical regression 1.90 35.6

NN 1.62 19.8

SVR 1.66 17.6

Land, cloudy Statistical regression 2.37 51.8

NN 1.89 24.2

SVR 1.80 24.9


