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1. INTRODUCTION 
     This oral presentation investigates the impact 
of predictor weighting in the Analog Ensemble 
(AnEn) technique and begins to examine the 
spatial relationships present through the optimal 
predictor weighting results and an effort to pre-
generate optimal weights using machine learning.  
Specifically, the AnEn is used for short-term (0-48 
hour) probabilistic forecasting of wind speed over 
the continental United States (CONUS). An analog 
is a historical case that closely represents a 
current case. Probabilistic predictions are 
generated using analogs between a current 
deterministic forecast and set of corresponding 
historical forecasts and observations.  The original 
AnEn implementation proposed by Delle Monache 
et al. 2013, weights each of the predictors equally 
in the defined similarity metric. This paper extends 
that original work by investigating the role of 
different weighting schemes in the computation of 
the similarity metric for 10-m wind speed and 2-m 
temperature. Junk et al. 2015 investigated optimal 
weighting strategies for the AnEn at five specific 
wind farms for wind power forecasting. This work 
extends Junk et al. 2015 contribution to 10-m wind 
speed and 2-m temperature predictions for 669 
surface stations across a variety of terrain types, 
vegetation categories, and population densities.  
     Delle Monache et al. 2013 have shown that the 
AnEn can generate well-calibrated probabilistic 
forecasts. Given a current deterministic forecast, a 
set of corresponding historical forecasts and their 
verifying observations, a similarity metric is used 
to select the most similar past forecasts to the 
current deterministic forecast.  Next, observations 
corresponding to the best matching historical 
forecasts are used to generate a probabilistic 
prediction. Central to the AnEn method is the 
definition of the metric which computes the 
similarity between a multivariate current 
deterministic forecast and a set of historical 
forecasts.  
* Corresponding author address: Laura Clemente-
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2. DATA 
     Data includes meteorological observations and 
corresponding historical Numerical Weather 
Prediction (NWP) model forecasts as defined in 
Delle Monache et al. (2013). The observed and 
historical forecast datasets, spanning a 15 month 
period, were divided into two sets: Set A contains 
12 months of data (days 1-365) and Set B 
contains three months (days 366-458).  

 
2.1 Observations 
     Available observations span a 15-month period 
from 1 May 2010 to 31 July 2011. Over this 457-
day period, the observational dataset was 
collected at 669 routine aviation weather reporting 
stations (METAR, surface) located across the 
CONUS. The dataset contains 10-m Above 
Ground Level (AGL) wind speed and 2-m AGL 
temperature measurements at three-hour 
intervals. 

 
2.2 Historical Numerical Forecasts 
     Historical numerical forecasts were generated 
by a regional version of the Environment Canada 
(EC) Global Environmental Multi-Scale (GEMS) 
model. GEMS is a variable resolution model 
capable of forecasting and simulating the 
atmosphere across global, meso-β and meso-γ 
scales (Cote et al. 1998). 
 
3. METHODOLOGY 
3.1 Analog Ensemble Method 
     The method builds an ensemble of analogs 
from deterministic NWP output (Delle Monache et 
al. 2013). Analogs are sought independently at 
each METAR station and for each lead-time. All 
historical forecasts are initialized at 00 UTC. The 
best-matching historical forecasts for the current 
prediction are selected as the analogs. The best 
match is determined by the similarity metric 
described in Delle Monache et al. (2013) as 
follows, 
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where Ft is the forecast for which analogs are 
being sought at the given time t and At is a 
historical forecast at time t’ before Ft. The process 
is repeated independently for each METAR 
location.  Nv and wi are the number of physical 
variables and their weights, respectively. In this 
study, Nv is equal to four (temperature, pressure, 
wind speed, wind direction) and optimal wi values 
are determined.  𝜎!!  is the standard deviation of 
the time series of past forecasts of a given 
variable at the same location, 𝑡 is an integer equal 
to half the width of the time window over which the 
metric is computed, and 𝐹!,!!!  and 𝐴!,!!!!  are the 
values of the current and past forecasts time 
window for a given variable.   
     The metric describes the quality of the analog 
chosen and is based upon the similarity of the 
current forecast window to the past forecast time 
windows available in the dataset. Analogs are 
ranked from most to least similar and can come 
from any past date within the training period. Next, 
the corresponding observations for each of the n 
best analogs are selected. Together, the 
corresponding observations generate the n 
members of the ensemble prediction for the 
current forecast lead-time.  Delle Monache et al. 
(2013) show that the AnEn has several attractive 
features including the use of higher resolution 
forecasts and no need for initial conditions, model 
perturbation strategies, or post processing 
requirements. The AnEn is able to capture flow-
dependent error characteristics and shows 
superior skill in predicting rare events when 
compared to state-of-the-art post processing 
methods (Delle Monache et al. 2011, Delle 
Monache et al. 2013).  
 
3.2 Null Case: Equally weighted predictor 
variables 
     All four predictor variables are equally weighted 
in order to determine baseline improvement. This 
is referred to as the null case. The improvement of 
the equally weighted predictor variables is 
thoroughly discussed in Delle Monache et al. 
(2013) and readers are directed to this article for a 
full description of the AnEn null case. 
 
3.3 Optimal Weight Identification 
     In the optimization case, weights are 
determined for each predictor and for each station 
using a brute force optimization algorithm.  The 
brute force algorithm used is similar to the 
algorithm described in Junk et al. (2015) and is 
used to identify the optimal predictor weights by 
computing all possible combinations between 0 
and 1.0, with a step factor of 0.1 for each of the 

669 stations. A total of 257 permutations for each 
station are required for this analysis because only 
combinations of weights that add to 1 are used. 
The root mean square error (RMSE) between 
predicted (using the AnEn mean) and observed 
wind speed is calculated for each station, each 
day, and each of the possible 257 weighting 
combinations.  Finally, the computed RMSEs for 
each of the days are averaged into a single value. 
The final result of the optimization is the set of 
weights for each station that achieve the lowest 
RMSE score among the weight combinations 
performed. 
 
3.4 Experimental Cases  
The following three cases, described in Figure 1, 
were used to test and validate the method:  
• Train: The optimal weighting is identified 

using the training dataset (days 1 - 365) using 
the leave-one-out method. A total of 364 runs 
are required, each using a 364 day rotation for 
training and the remaining day for testing.  

• Test: Weights are applied to the testing 
dataset (days 366 - 458). This represents an 
operational case and the improvement that 
could be obtained using optimized weights.  

• Theoretical: The optimal weighting is 
identified using the testing dataset (days 366 - 
458) and the leave-one-out method as 
previously described in the training phase. The 
results provide the theoretical maximum 
possible improvement for the testing dataset.   

 

 
Figure 1: Description and depiction of 
partitioning of data into set A and set B as well 
as the training, testing and theoretical cases 
used for both the null and optimized 
experiments.  

4. RESULTS  
     Results from applying the AnEn method to 
surface METAR stations are presented for four 
cases: equal weighting (null case) for 10-m wind 
speed and 2-m temperature and optimized 
weighting for both 10-m wind speed and 2-m 
temperature.  
 
 



4.1 Null case 
     In the null case each predictor is weighted 
equally and results in an average RMSE of 1.43 
for 10-m wind speed predictions and 2.38 for 2-m 
temperature predictions when the AnEn technique 
is applied to set B using the search space of set A.  
Further descriptions of this improvement are 
encompassed in Delle Monache et al. (2013). 
 
4.2 Optimized Weighting 
     Results from the optimized weights are 
compared to the results of the null (equal weights) 
case.  The improvement is computed as a 
percentage increase (or decrease in some cases) 
of the performance with respect to the null case. 
 
4.3 10-m Wind Speed Predictions 
     Figure 2 shows the behavior of the AnEn at 
one specific sample station out of the 669 stations. 
Plots (a), (b), (c), and (d) in the figure show the 
four predictors pressure, temperature, wind 
direction, and wind speed, respectively. Each 
figure shows the ensemble of analogs and the 
deterministic model forecast value over the 0-48 
hour forecast period at three-hour intervals. The 
dotted red line shows the deterministic model 
forecast value and the boxplot shows the range of 
the ensemble of analogs chosen for each forecast 
lead time. The bottom panel compares the chosen 
analogs (grey boxplots), deterministic forecast 
model (red dashed line), and the corresponding 
wind speed observations indicated by blue circles.  
Note how the analogs more closely capture the 
observed wind speed values compared to the 
forecast values.  Figure 3 shows improvement in 
all three cases (training, testing, and theoretical) 
for each station sorted from the least to most 
improved. RMSE results show an average 
improvement of 9.5% for the training set, 6.8% for 
the maximum theoretical improvement, and 4.9% 
improvement for the operational (real world) case. 
This improvement is relative to the null case. A full 
investigation and verification of the technique for 
the null case is described in Delle Monache et al. 
(2013). Three stations achieved greater than 15% 
improvement. Results indicate that maintaining the 
inter-relationships present among the variables 
and, furthermore, highlighting those relationships 
most important to forecast improvement through 
predictor weighting is beneficial.   
     Figure 4 shows the optimal weighting across all 
stations investigated using the brute force method 
described. The figure clearly depicts wind speed 
as the most important predictor receiving an 

average of 60% weighting across all stations. 
Wind direction, temperature, and pressure each 
require lower average weightings for optimal 
forecast performance. Figure 5 shows stations 
exhibiting greater than 10% forecast skill 
improvement reached through optimal predictor 
weighting.  
4.4 2-m Temperature 
     AnEn generated for 2-m temperature show an 
average improvement of 52% for the training case, 
2% for the maximum theoretical improvement, and 
1% for the operational (real world) case 
improvement. Similar to the wind results, the 
predictor being predicted receives the greatest 
importance in prediction. Thus, temperature 
receives the highest weighting across all stations. 
Wind speed, wind direction, and pressure each 
require lower or zero weightings for optimal 
forecast performance.   Temperature 
improvements are much smaller than the wind 
speed forecasting case. In general, NWP 
temperature forecasts are better than wind speed 
forecasts therefore there is less improvement 
available for temperature. Improvement is smallest 
in the summer and there is minimal signal in the 
summer for the best matching to pickup. 
Furthermore, the NWP model is very good at 
catching that lack of signal and predicting it well.  
 
4.5 Impact of optimal weighting on analog 
selection 
     Clear differences in the analog selection occur 
when predictors are optimally weighted.  When wi 
is equally weighted for all predictors there is a 
strong seasonal bias in the analog selection. 
However, when wi is optimally weighted, the 
seasonal analog selection bias is decreased and, 
sometimes, nonexistent. In some cases, if the 
seasonal analog selection bias is maintained, then 
the ordering of the analog selection from most to 
least similar is reordered.  For example, in an 
ensemble of analogs when a size of n=21 is used, 
the analog selection with optimal weights will 
either (a) decrease in its seasonal bias or (b) the 
ordering of the analogs chosen will change 
whereby an analog with the position of two may 
move to position seven in the categorization of 
most to least similar with one being the most 
similar and 21 being the least similar analog within 
the ensemble of analogs. This research has so far 
used the mean of the n=21 ensemble of analogs, 
however, results will suggest how to utilize each of 
the individual ensemble members.

  
 



Figure 2: Specific example from one specific station. NWP model forecasts for each of the four 
parameters are depicted. The dotted red line indicates the deterministic model forecast value. The 
horizontal axis provides the time interval of the forecast from 0-48 hours at three-hour intervals. 
The bottom box depicts wind speed forecasts from the deterministic forecast model, 
corresponding wind speed observations indicated by a blue circle, and boxplots depict the range 
of analogs chosen.  
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Figure 3: Improvement by station of the AnEn forecasts for wind speed compared to the equally 
weighted AnEn null case for each of the three cases: training, testing, and optimization. Results 
are sorted from the least to the most improvement observed at each station and improvement is 
based on the minimization of RMSE.  
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Figure 4: Top: The four panel chart depicts the optimal weight at each station for the four 
predictor variables: pressure, wind speed, temperature, and wind direction. The optimal weighting 
value corresponds to the circle size drawn. Only stations with weights greater than zero are 
plotted. Bottom: Boxplot describing the overall distribution of parameter weighting for all 669 
stations. The boxplot identifies the range of weights across all 669 stations, the black line within 
the box represents the median, and the black squares indicate outliers.  
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Figure 5: Four panel chart, similar to Figure 4 (top), showing all stations with greater than 10% 
forecast improvement and the corresponding optimal weights indicated by circle size. 

4.6 Machine learning to determine optimal 
weights 
     In this component of the research we seek to 
determine the optimal weights without the use of a 
brute force algorithm and with only the available 
historical forecasts and observations, and if there 
is a spatial component to this. First, a machine 
learning classification effort is used. However, the 
number of categories of optimal weights are too 
large for the size of the dataset available. Next, an 
unsupervised clustering algorithm called k-means 
is used. For this, dataset A is used and broken into 
seasons. k-values from two to 30 are tested and 
each test is performed 30 times for a total of 840 
k-means tests. Stations remaining in the same 
cluster throughout the entire experiment were 
annotated as anchor points. These anchor points 
were used to identify other stations within a cluster 
and then enable investigation into the behavior at 
the stations in each cluster. While this developed 
an understanding of the characteristics in each 

cluster, this did not result in a clear way to pre-
determine the optimal weights without using a 
brute force algorithm and additional machine 
learning techniques will need to be studied.  
 
5. CONCLUSION 
     The optimal combination of AnEn predictor 
weighting was investigated for 10-meter wind 
speed and 2-m temperature forecasting for each 
METAR stations across the CONUS. The AnEn 
has shown to be an effective method for providing 
bias corrected and calibrated short-term forecasts. 
In the majority of previous studies, metric 
weighting was equal for all predictors and 
optimally weighted results focused on a small 
subset of solar or wind farms. Research results 
show that optimal weighting can lead to improved 
forecast performance of 4.9% on average with 
some stations seeing greater than 15% 
improvement for predicting 10-m wind speed with 
fewer computational resources expended. Results 
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show improvement in 2-m temperature forecasts, 
albeit smaller than the wind improvements. In 
particular, the optimal weighting investigations 
highlight the impact of optimal weighting on analog 
selection within the search space. When 
predictors are weighted equally, there is a 
seasonal bias to the analog selection within the 
search space whereas with optimal predictor 
weighting this bias is significantly reduced.  
     This research uncovers a spatial variation to 
the optimal weighting strategies whereby stations 
with similar weights appear to cluster with some 
potentially geographically related regions 
depending on terrain, land use land cover, and 
general synoptic features.  Future study will 
investigate the underlying reasons for the 
variability in station improvement with optimal 
weighting. The objective would be to determine 
the differing characteristics for each site and the 
contribution to improved forecast skill. Knowledge 
from this research can lead to rapid predictions of 
parameters near the land surface using the AnEn. 
This method and optimal weighting could be 
utilized in regions where forecast models are 
known to have significant bias, ensemble 
forecasting is too expensive or computationally 
prohibitive, and a record of historical observations 
exists.    
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