

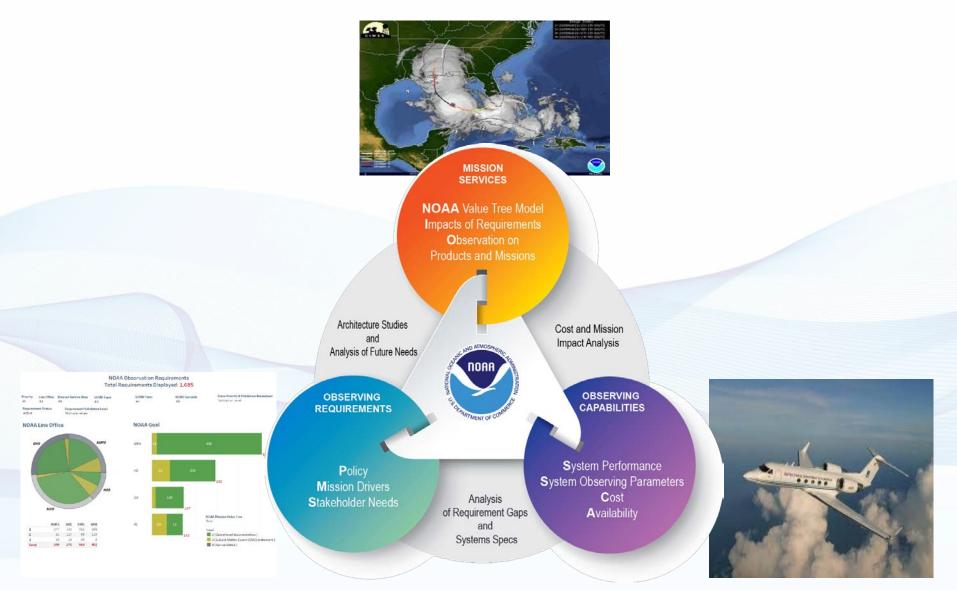
Evolution of

NOAA's Observing System Integrated Analysis (NOSIA)

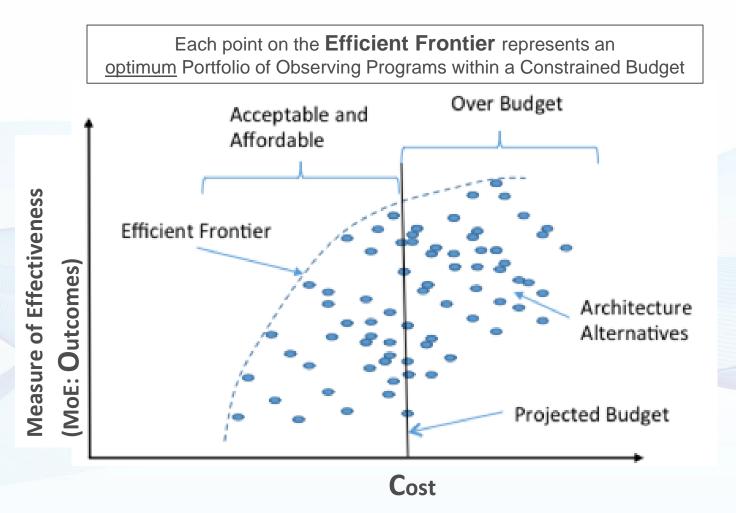
Presented to the 13th Symposium on Societal Applications: Policy, Research and Practice (paper 9.1)

Louis Cantrell Jr., and D. Helms, R. C. Reining, A. Pratt, B. Priest, and V. Ries

98th Annual Meeting American Meteorological Society Austin, Texas



Overview



2 How NOSIA is Evolving

Observing System Portfolio Management

System Engineering Measure of Effectiveness

Capability Improvement Prioritization

NOAA Emerging Technologies for Observations Workshop

Sponsored by the NOAA Observing Systems Council

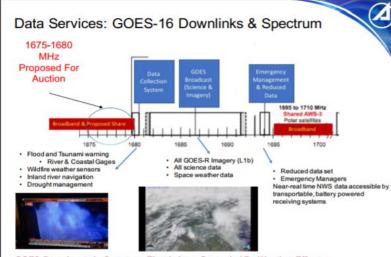
August 22-23, 2017 - NCWCP

Identifying Capability Improvements for the Greatest NOAA-wide Benefit

- National Water Level Observation Network
- Tropical Atmosphere Ocean Buoy Ocean Profiles
- Commercial Fisheries Dependent Data Surveys
- ARGO
- Integrated Ocean Observing System Regionals
- Animal Borne Sensors
- National Observer Program (NOP)
- Drifting Buoy Network
- NEXRAD Precipitation Products
- Program-funded Habitat Surveys
- Coastal Weather Buoys Atmospheric Surface Observations
- Recreational Fish Surveys
- Historical Habitat Databases
- Chartered Vessels Research
- NWS Upper Air Soundings
- Coastal-Marine Automated Network
- GOES Imagery
- NERR_SWMP
- Automated Weather Observing System
- Global Ocean Observing System Carbon Network

Future Architecture Definition

Programmed Acquisitions


Planning Future Acquisitions

NOSIA Value Tree Can Inform a Definition of an Optimized Future Architecture Acquisition

Global Earth Observing Satellite System

Spectrum Impact Analysis

GOES Broadcasts In Spectrum That Is Less Degraded By Weather Effects In Order to Provide Consistent Service

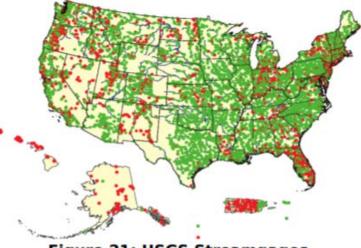
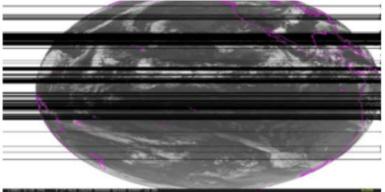



Figure 21: USGS Streamgages

Terrestrial Interference to NOAA Imagery Reception August 17, 2015 GOES Source: NOAA https://www.nesdis.noaa.gov/content/noaa's-environmentalobservations-spectrum-matters

GOES Data Collection System Loss Impact Analysis

NESDIS Communication Service: In-situ data relay Coastal-Marine Automated Network Gulf of Mexico Oil Platforms National Estuarine Research Reserve System-Wide Monitoring Program National Water Level Observation Network Cooperative Observer Program Stream Gage Network Ocean Acidification Gliders **OAR** Radars Physical Oceanographic Real-Time System Interagency Remote Automated Weather Stations **USACE Stream Gage Network USDOI/BR Stream Gage Network USFWS Stream Gage Network USGS Mobile Surge Sensors USGS** Rain Gage Network **USGS** Tide Gages

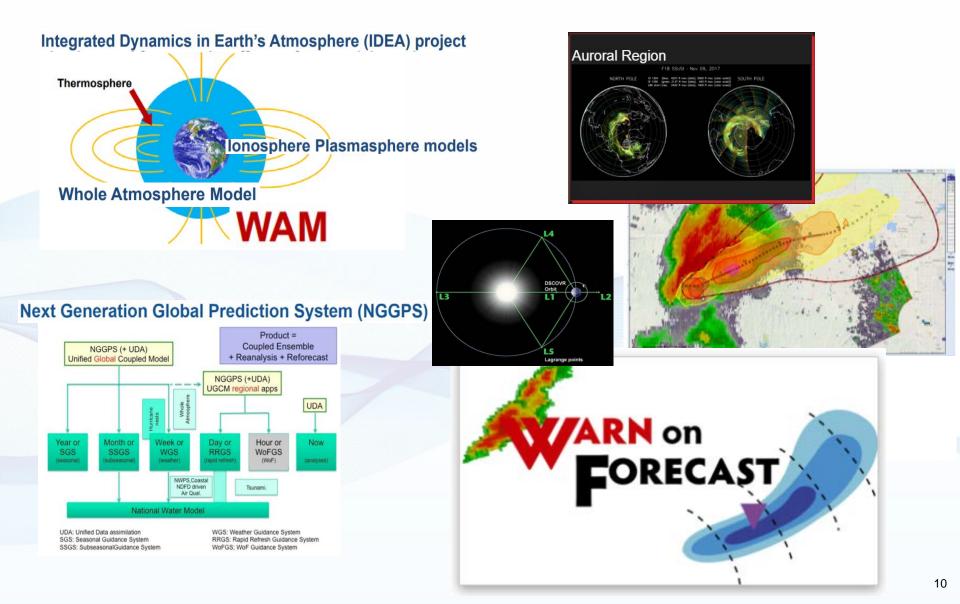
Impact from loss of	NOAA	CLI	НО	RC	WRN
Communication Service: Direct broadcast	12%	9%	3%	27%	8%
Communication Service: In-situ data relay	1270	970	570	21/0	0/0

Ship Decommissioning & Scheduling Impact Analysis

NOAA FISHERIES

Science Centers

Alaska Northeast Northwest Pacific Islands Southeast and Caribbean Southwest


NOAA Ship Henry B. Bigelow Northeast Fisheries Science Center

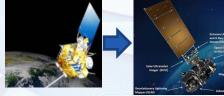
NOAA Ships

		. 76	Impact	
		Impact	Category	I
NOAA	NOAA		Very High	
Climate Adaptation and Mitigation	CLI		High	
Assessments of Climate changes and its impacts	CLI_ACC	4.76	High	key
Climate Mitigation and Adaptation strategies	CLI_CMA	7.52	High	Very High
Climate Prediction and Projections	CLI_CPP	2.27	Moderate	High
Climate Science and Improved Understanding	CLI_SIU	4.19	High	Moderate
Healthy Oceans	НО	12.62	Very High	Low
Ecosystems Monitoring, Assessment and Forecast	HO_ECO	20.40	Very High	Supplemental
Fisheries Monitoring, Assessment and Forecast	HO_FMA	8.67	High	No Impact
Habitat Monitoring and Assessment	HO_HAB	12.99	Very High	
Protected Species Monitoring and Assessments	HO_PSM	12.67	Very High	
Healthy Ocean Science, Services, and Stewardship Advances	HO_SSS	10.14	Very High	
Resilent Coastal Communities and Economies	RC	8.32	Very High	
Coastal Water Quality	RC_CWQ		Very High	
Marine Transportation	RC_MTS	4.63	High	
Resilience to Coastal Hazards and Climate Change	RC_RCC	3.56	High	
Planning and Management	RC_PAM	8.48	Very High	
Resilient Coasts Science, Services, and Stewardship Advances	RC_SSS	18.28	Very High	
Arctic Matrix Program	RC_AMP	3.24	High	
Weather Ready Nation	WRN	0.14	Supplemental	
Aviation Weather and Volcanic Ash	WRN_AWX	NIA		
Fire Weather	WRN_FWX	NIA		
Hurricanel Tropical Storms	WRN_HUR	NIA		
Hydrology and Water Resources (Integrated Water Forecasting)	WBN_IWF	NIA		
Marine Weather and Coastal Events	WBN_MWX	NIA		
Routine Weather	WRN_RWX	NIA		
Severe Thunderstorms, Tornados and Flash Floods	WRN_SEV	NIA		
Space Weather	WRN_SWX	NIA		
Tsunami	WRN_TSU	1.08	Low	
Weather Ready Nation Science, Services, and Stewardship Advance	-		Low	
Winter Weather	WRN_WWX	NIA		
Environmental Modeling Prediction	WRN_EMP	1.35	Moderate	

Immach

Evolution of NOAA Services

Evolution of the Observing System Architecture

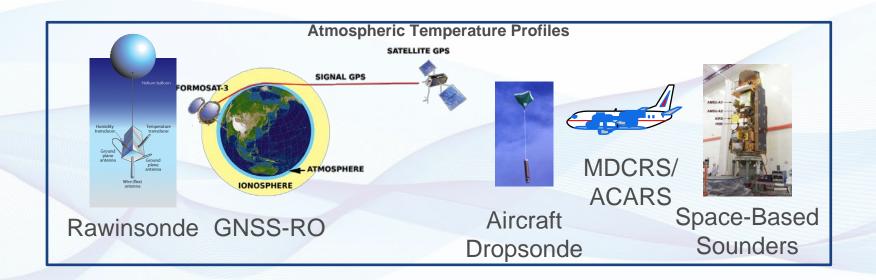

Capabilities Lost,

Capabilities on the way out,

Enhanced Capabilities,

GOES 13 to 16

and New Capabilities.


- Phased Array Radar
- Three-Dimensional Tropospheric Winds from Space-Based Lidar
- Space-based multi-spectral Imager for Aurora
- Thermospheric composition and dynamics at high latitudes from space
- Coronograph, Photospheric and Heliospheric Observations off Sun-Earth axis

POES to JPSS

Investment Optimization

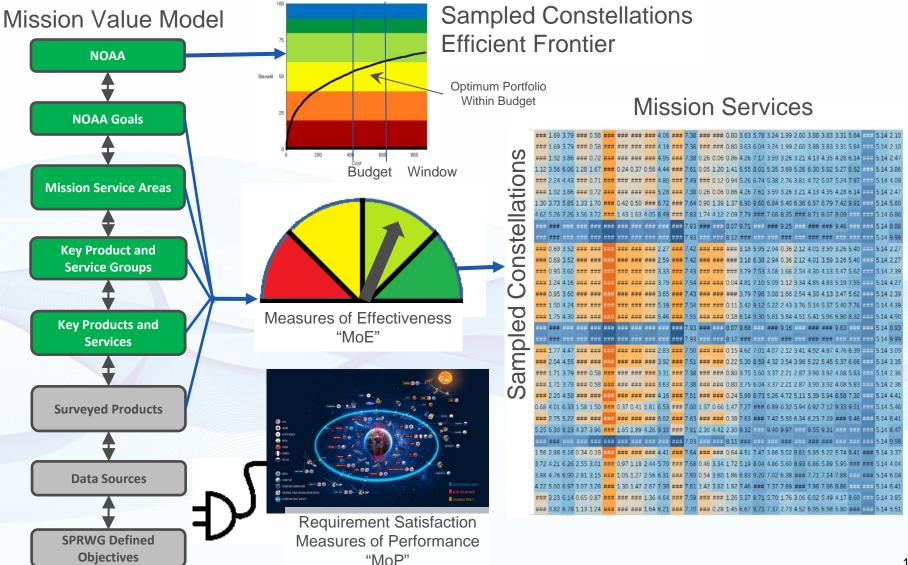

Optimize Investment

In Collection Method and Operating Domain Among Different Capabilities

Investment Optimization

Optimize Investment

Evolution of Portfolio Analysis


Attribute Level Trades Analysis (ALTA)

	MULTI-SWING TABLE (MST)						C-h-r	
							Solve	
Parent SQ	0.55							
	geographic coverage	horizontal resolution	Accuracy (deg)	Forecast Interval (hr)	Model Update (hr)	Forecast Duration	Overall	
	0.2						0.010	min
	1						0.550	base
	1.2						0.860	full
	1.21						0.900	max
		0.3					0.650	max
		1					0.600	full
		3					0.550	base
		15					0.010	min
			1				0.680	max
			4.9				0.550	full
			5				0.550	base
			15				0.010	min
				1			0.650	max
				12			0.550	full
				24			0.550	base
				24.1			0.010	min
					5.9		0.600	max
					6		0.600	full
					24		0.550	base
					24.1		0.010	min
						72	0.010	min
						96	0.550	base
						96.1	0.550	full
						120	0.650	max
	end	end	end	end	end	end		

New Survey Methodology in Development

- Assesses Observation Parameter Attributes (e.g. Horizontal Resolution)
- Trades capability among performance characteristics (e.g. more accuracy vs less Latency)
- Evaluates wide range of capabilities to meet a requirement
- Not specific to one observing system
- Explicitly links requirement satisfaction to system's value to meet mission
- Applicable to observation products or sensor data
- Models observation utility between minimum threshold and maximum utility

Evolution of Capabilities

Thank You and Contact Information

NOAA Technical Report NESDIS doi:10.7289/V52V2D1H

NOAA Observing System Integrated Analysis (NOSIA-II) Methodology Report

Washington, D.C. December 2015

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service

https://nosc.noaa.gov

TPIO

TECHNOLOGY, PLANNING, AND INTEGRATION FOR OBSERVATION

Louis.Cantrell@NOAA.gov David.Helms@NOAA.gov

Technology, Planning, and Integration for Observations

