
air • planet • peopleCISL/TDD/ASAP

© UCAR, 2015

Using Parallel Python Tools to
Postprocess Data for CMIP6

Sheri Mickelson
Kevin Paul

Eighth Symposium on Advances in
Modeling and Analysis Using Python

AMS 2018

1

air • planet • people
© UCAR, 2015

What is CMIP6?

Using Parallel Python Tools to Postprocess Data for CMIP6

2

§ Internationally coordinated effort to run sets
of defined experiments. There are roughly
30 different centers from around the world
that will be participating.

§ Each experiment has a defined set of
protocols, forcings, and requested output.

§ Running the same experiments with
multiple models leads to stronger results.

§ The results of these simulations are
evaluated as part of the IPCC Climate
Assessment Reports. The results are also
used by international governments for policy
decisions and for further research by
scientific institutions and universities.

air • planet • people
© UCAR, 2015

CMIP5 Workflow

Using Parallel Python Tools to Postprocess Data for CMIP6

3

Model	Run

Publication

Post-
Processing

CESM	
Model	Run

Time	Series	
Conversion
(NCO)

CMOR

Diagnostics
(NCO/NCL)

Push	to	
ESGF

These	are	all	of	the	steps	that	we	need	to	take
to	publish	our	data	to	the	community.		For	
CMIP5	this	process	took	15	months	to	
postprocess 200	TB	of	data.

air • planet • people
© UCAR, 2015

CMIP5 Workflow

Using Parallel Python Tools to Postprocess Data for CMIP6

4

Model	Run

Publication

Post-
Processing

CESM	
Model	Run

Time	Series	
Conversion
(NCO)

CMOR

Diagnostics
(NCO/NCL)

Push	to	
ESGF

Series 1
Field 1

Slice 1

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 5

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 3

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 4

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 2

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Series 2
Field 2

Series 3
Field 3

Converting	from	Time	Slice	to	Time	Series

Model	outputs	data	in	a	format	that	has	one	
time	slice	and	multiple	variables.		The	
preferred	distribution	format	is	one	variable	
and	multiple	time	slices.		This	step	converts	
from	one	format	to	the	other.		The	existing	
method	used	NCO	for	the	conversion.
This	was	the	most	expensive	step	in	CMIP5.

air • planet • people
© UCAR, 2015

CMIP5 Workflow

Using Parallel Python Tools to Postprocess Data for CMIP6

5

Model	Run

Publication

Post-
Processing

CESM	
Model	Run

Time	Series	
Conversion
(NCO)

CMOR

Diagnostics
(NCO/NCL)

Push	to	
ESGF

6	Component	Diagnostic	Packages	
(Atm,	Lndx2,	Ocn,	SeaIce,	BGC)

Used	to	document	and	evaluate	the	climate	
simulation.

All	of	the	original	packages:	
1. Contain	a	top	level	control	script
2. Create	climatology	files	with	NCO	

tools
3. Create	hundreds	of	plots	with	NCL	

scripts
4. Create	web	pages	that	allow	users	to	

browse	through	plots

air • planet • people
© UCAR, 2015

CMIP5 Workflow

Using Parallel Python Tools to Postprocess Data for CMIP6

6

Model	Run

Publication

Post-
Processing

CESM	
Model	Run

Time	Series	
Conversion
(NCO)

CMOR

Diagnostics
(NCO/NCL)

Push	to	
ESGF

This	step	Standardizes the	model	output	in	
in	order	to	make	it	easier	to	compare	against
other	models	for	the	intercomparison.		

Some	examples:
• File	formats	(e.g.,	NetCDF4)
• Names	of	files	and	directory	structure
• File	attributes	(e.g.,	institution,	MIP	name,	…)
• Names	of	dimensions	(e.g.,	lat,	lon,	…)
• Names	of	variables	(e.g.,	psl,	ta,	tas,	…)
• Dimensions	of	variables
• Variable	data	types	(e.g.,	float,	double,	

…)
• Attributes	of	variables	(e.g.,	units,	…)
• Ranges	of	time	(e.g.,	2006	to	2100)
• Deriving	variables	that	are	not	outputted	

directly

Used	Fortran	and	NCL	code,	NCO,	
and	CMOR

air • planet • people
© UCAR, 2015

CMIP5 Workflow

Using Parallel Python Tools to Postprocess Data for CMIP6

7

Model	Run

Publication

Post-
Processing

CESM	
Model	Run

Time	Series	
Conversion
(NCO)

CMOR

Diagnostics
(NCO/NCL)

Push	to	
ESGF

Motivation:
For	CMIP6	we	will	have	to	postprocess 6	PB	of	
data	within	the	same	amount	of	time.		We	
needed	better	methods	in	order	to	be	able	to
create	this	amount	of	data	for	the	community
in	time	for	AR6.

We	Needed	to	do	Three	Things:
1. Increase	Performance:		Added	parallelization	into	the	workflow
2. Reduce	Human	Intervention:		Worked	on	integrating	our	workflows	

into	an	automated	workflow	engine
3. Project	Management:	Everything	is	coordinated	through	a	central	

database

CMIP6
6PB

(Current	Prediction)

CMIP5
200TB

air • planet • people
© UCAR, 2015

CMIP6 Workflow

Using Parallel Python Tools to Postprocess Data for CMIP6

8

Model	Run

Publication

Post-
Processing

CESM	
Model	Run

Time	Series	
Conversion
(PyReshape)

PyConform

Diagnostics
(PyAverager)

Push	to	
ESGF

W
or
kf
lo
w
	D
riv

en
	b
y	C

yl
c

Experiments
Update

Their	Status	in	
Run	Database

We	rewrote	tools	in	Python	and	added	task	parallelization.

All	of	the	tools	depend	on:
• MPI4Py	for	internode	communication
• PyNIO and	NetCDF4-python	for	I/O

air • planet • people
© UCAR, 2015

Parallelization Methods

Using Parallel Python Tools to Postprocess Data for CMIP6

9

Slice 1
Fi

el
d

1
Fi

el
d

2
Fi

el
d

3
Slice 3

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 2

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Series 1
Field 1

Series 2
Field 2

Series 3
Field 3

Rank 1

Rank 2

Rank 3

T
im

e
A

ve
ra

ge
d

C
lim

at
ol

og
y

Fi
le

T
im

e
A

ve
ra

ge
s

(I
nt

er
na

l
M

em
or

y)
T

im
e-

Se
ri

es

Fi
le

s

Var 1 Var 2 Var 3

Rank 1 Rank 2 Rank 3

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

Rank 0

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

Var 1 Var 2 Var 3

Rank 1 Rank 2 Rank 3

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

Rank 0

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

Var 1 Var 2 Var 3

Rank 1 Rank 2 Rank 3

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

Rank 0

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

AVG
1

AVG
2

AVG
3

AVG
4

AVG
5

AVG
6

AVG
7

AVG
8

AVG
9

A
ve

ra
ge

s
to

C

om
pu

te

InterCommunicator 1 InterCommunicator 2 InterCommunicator 3

PyReshaper

PyAverager

PyConform

“x = X1 + X2”Read:
X1[i]

Read:
X2[i]

Evaluate:
(X1+X2)[i]

Map:
iàj

Validate:
> minimum
< maximum

dimensions = [j]
et	cetera

Write:
x[j] File

“y = X1 - X2”

Read:
X1[i]

Read:
X2[i]

Evaluate:
(X1-X2)[i]

Map:
iàj

Validate:
> minimum
< maximum

dimensions = [j]
et	cetera

Write:
y[j] File

air • planet • people
© UCAR, 2015

PyReshaper Performance

Using Parallel Python Tools to Postprocess Data for CMIP6

10

Results	are	from	running	the	PyReshaper tool	on	16	yellowstone cores,	4	cores	on	4	nodes

air • planet • people
© UCAR, 2015

PyAverager Performance

Using Parallel Python Tools to Postprocess Data for CMIP6

11

0.1

1

10

100

1000

ATM-SE ICE LND OCN Total

Ti
m

e
(m

in
ut

es
) l

og
 s

ca
le

CESM Model Component

NCO
PyAverager

Time	to	compute	climatology	files	
for	10	years	of	CESM	monthly	time	
slice	files.		
The	PyAverager ran	on	120	cores	
on	yellowstone and	the	diagnostics	
on	16	yellowstone cores.

1

10

100

Ti
m

e
(m

in
) l

og
 s

ca
le

Performance Comparison Across Diagnostic Packages

Original
PyAverager/NCL in Parallel

air • planet • people
© UCAR, 2015

PyConform Performance
(Preliminary Timing Numbers)

Using Parallel Python Tools to Postprocess Data for CMIP6

12

CESM	Case	Name
CMIP5	
Table

Input	
Dataset	
Size

Output	
Dataset	
Size

Original
Serial	
Runtime

PyConform
Parallel	
Runtime
(16	Procs) SPEEDUP

b40.rcp4_5.1deg.006 Amon 84 GB 62	GB 72	mins 2	mins 38x

b40.20th.track1.1deg.012
Amon 135	GB 102	GB 120	mins 8	mins 16x

3hr 540	GB 506	GB 6	hours 11	mins 34x

air • planet • people
© UCAR, 2015

CMIP6 Workflow

Using Parallel Python Tools to Postprocess Data for CMIP6

13

Model	Run

Publication

Post-
Processing

CESM	
Model	Run

Time	Series	
Conversion
(PyReshape)

PyConform

Diagnostics
(PyAverager)

Push	to	
ESGF

W
or
kf
lo
w
	D
riv

en
	b
y	C

yl
c

Experiments
Update

Their	Status	in	
Run	Database

We	adopted	Cylc as	our	workflow	Engine	(written	by	Hilary	Oliver	at	NIWA)

We	auto-generate	the	workflow	description	files	from	both	the		CESM		and	postprocess
environments.		All	the	user	needs	to	do	is	edit	a	top	level	script	to	set	certain	variables	
(run	length,	which	diagnostics	to	run,	etc)	and	then	manually	start	the	run	through	Cylc’s
GUI	or	command	line	interface.

air • planet • people
© UCAR, 2015

Use Cases of Experiments That
Used Cylc

§ Used Cylc to complete 1,240 out of 1,860
total runs ~750 TB timeslice output in
about 1 month

§ Used Cylc to run and postprocess part of a
30 member ensemble in a couple of
months

§ Used Cylc to build and run over 20,000
forecast ensembles in a couple of months

Using Parallel Python Tools to Postprocess Data for CMIP6

14

air • planet • people
© UCAR, 2015

Questions?
§ PyReshaper

§ https://github.com/NCAR/pyreshaper
§ PyAverager

§ https://github.com/NCAR/pyAverager
§ PyConform (still in development)

§ https://github.com/NCAR/PyConform
§ CESM/Cylc WF

§ https://github.com/NCAR/CESM-WF
§ Cylc

§ https://cylc.github.io/cylc/

Conact Info mickelso .at. ucar.edu

Using Parallel Python Tools to Postprocess Data for CMIP6

15

