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Motivation
I. Extreme precipitation events vital for 

engineering design and planning
II. Deterministic methods widely used for design 

projects
a) Singe value with no associated probability

III. Precipitation-frequency analyses provide 
range of magnitudes and probabilities
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Tennessee River Valley Watershed

Observations from GHCN-Daily stations with 85% 
data availability for 10+ years period of record

Case Study



Precipitation-Frequency Methods
L-Moments:
– Summarized in Hosking and 

Wallis (1997)
– Deterministic system for 

describing PDFs
– Based on linear combinations 

of moments
– λ1=L-location (mean)
– λ2=L-scale (variability or 

dispersion)
– λ3=L-skewness (asymmetry)
– λ4=L-kurtosis (thickness of tail)

– Can estimate parameters for 6 
distributions; focus on GEV

Bayesian Inference:
– Application of Bayes Rule; 

assume observations (Y) are 
fixed and estimate PDF 
parameters (𝜃𝜃)

– Consider the GEV likelihood 
function

– Define prior distributions for 
GEV params, apply Monte 
Carlo sampling, acceptance 
criteria, build posterior 
distributions of 𝜃𝜃

𝑝𝑝 𝜃𝜃 𝒀𝒀 =
𝑝𝑝 𝒀𝒀 𝜃𝜃 𝑝𝑝 𝜃𝜃

𝑝𝑝(𝒀𝒀) ∝ 𝑝𝑝 𝒀𝒀 𝜃𝜃 𝑝𝑝 𝜃𝜃



Regional Frequency Approach
1. Identify homogeneous region(s) 
2. Screen observations for false/erroneous 

records
3. Identify annual (or seasonal) maxima 
4. Estimate GEV distribution parameters

• L-moments
• Bayesian inference

5. Compute point precipitation frequency 
results



Available R packages for SOM analysis: 
library(“som”) 
library(“kohonen”)

Self-Organizing Map
Clustering algorithm used to “group” 
stations with similar attributes
Apply SOM algorithm to :

• Latitude
• Longitude
• Elevation
• Avg annual precipitation
• Avg annual max one-day 

precipitation
Each station maps to a single SOM node

SOM Output Map

Gauges mapped to 
same node define 
homogeneous regions

Homogeneous regions 
need not be contiguous



L-Moments RGCs



Bayesian Inference RGCs



L-Moments vs. Bayesian



Summary
Precipitation-frequency analyses provide users 

with expected return periods of heavy events
Frequency estimates vary based on estimation 

method
- In all but one region, L-moments best-

estimates exceed Bayesian best-estimates
- Uncertainty bounds from Bayesian inference 

always exceed L-moments
Additional testing is needed to understand 

operational benefits of Bayesian inference 
over L-moments
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Question

How do precipitation-frequency 
estimates developed using the L-

moments algorithm compare with 
estimates developed using Bayesian 

inference?



L-Statistics
System for describing probability 
distribution functions based on linear 
combinations of moments

L-moments:
λ1=L-location (mean)
λ2=L-scale (variability or dispersion)
λ3=L-skewness (asymmetry)
λ4=L-kurtosis (thickness of tail)

L-moment ratios (dimensionless):
Τr=λr/λ2

Τ=L-CV= λ2/λ1 (variability)

location

scale

skewness

kurtosis

Hosking and Wallis (1997)

Available R packages for L-moments: 
library(“lmom”) 
library(“lmomRFA”)



Bayesian Inference
Bayes’ Rule in a modeling framework:

𝑝𝑝 𝜃𝜃 𝒀𝒀 =
𝑝𝑝 𝒀𝒀 𝜃𝜃 𝑝𝑝 𝜃𝜃

𝑝𝑝(𝒀𝒀)
∝ 𝑝𝑝 𝒀𝒀 𝜃𝜃 𝑝𝑝 𝜃𝜃

where 𝒀𝒀 = 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛 and 𝜃𝜃 = 𝜇𝜇,𝜎𝜎, 𝜉𝜉

• Define prior distributions for model parameters 𝜃𝜃 (a priori 
knowledge)

• Consider GEV likelihood function (can consider GNO, GLO, etc.)
• Monte Carlo, acceptance criteria, builds posterior distributions of 𝜃𝜃

Bayesian inference derives the posterior probability as a consequence of 
a prior probability and a likelihood function Available R packages for Bayesian inference: 

library(“rstan”) 
library(“spBayes”)



Bayesian inference
Prior 𝑝𝑝(𝜽𝜽): the strength of our belief in 𝜃𝜃 without the data 𝑌𝑌

Posterior 𝑝𝑝(𝜽𝜽|𝒀𝒀): the strength of our belief in 𝜃𝜃 when the data 𝑌𝑌 are 
taken into account

Likelihood 𝑝𝑝(𝒀𝒀|𝜽𝜽): the probability that the data 𝑌𝑌 could have been 
generated by the model with parameter values 𝜃𝜃

Evidence p(Y): the probability of the data according to the model, 
determined by summing across all possible parameter values weighted by 
the strength of belief in those parameter values 

→ typically unknown, can be ignored with proportionality
→ essentially a normalizing constant
→ does not enter into determining relative probabilities (models)

Available R packages for Bayesian inference: 
library(“rstan”) 
library(“spBayes”)



SOM Results – At-Site Means
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