RECLANATION Managing Water in the West Developing Precipitation Frequency Estimates in Regions of Complex Terrain

Kathleen D. Holman¹, Andrew P. Verdin¹, David P. Keeney¹, and Joseph Kanney²

¹Bureau of Reclamation Technical Service Center ²U.S. Nuclear Regulatory Commission

U.S. Department of the Interior Bureau of Reclamation

Outline

- 1. Motivation
- Case study in Tennessee River Valley
 A. Data
 - B. Precipitation-Frequency Methods
 - C. Results
- 3. Summary & Conclusions

Motivation

- I. Extreme precipitation events vital for engineering design and planning
- II. Deterministic methods widely used for design projects
- a) Singe value with no associated probability
 III. Precipitation-frequency analyses provide range of magnitudes and probabilities

Case Study

Tennessee River Valley Watershed

Observations from GHCN-Daily stations with 85% data availability for 10+ years period of record

Precipitation-Frequency Methods

L-Moments:

- Summarized in Hosking and Wallis (1997)
- Deterministic system for describing PDFs
- Based on linear combinations of moments
 - λ_1 =L-location (mean)
 - λ_2 =L-scale (variability or dispersion)
 - λ_3 =L-skewness (asymmetry)
 - λ_4 =L-kurtosis (thickness of tail)
- Can estimate parameters for 6 distributions; focus on GEV

Bayesian Inference:

 Application of Bayes Rule; assume observations (*Y*) are fixed and estimate PDF parameters (θ)

 $p(\theta|\mathbf{Y}) = \frac{p(\mathbf{Y}|\theta)p(\theta)}{p(\mathbf{Y})} \propto p(\mathbf{Y}|\theta)p(\theta)$

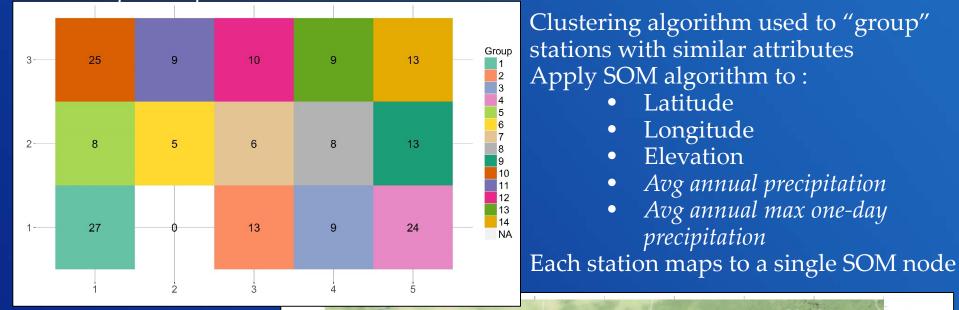
- Consider the GEV likelihood function
- Define prior distributions for GEV params, apply Monte Carlo sampling, acceptance criteria, build posterior distributions of θ
 RECLAMATIO

Regional Frequency Approach

- 1. Identify homogeneous region(s)
- 2. Screen observations for false/erroneous records
- 3. Identify annual (or seasonal) maxima
- 4. Estimate GEV distribution parameters
 - L-moments
 - Bayesian inference
- 5. Compute point precipitation frequency results

RECLAMATIC

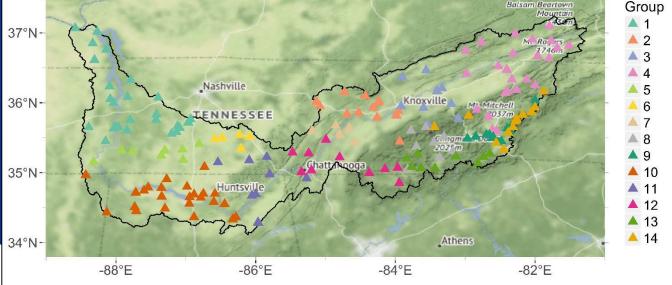
SOM Output Map Self-Organizing Map



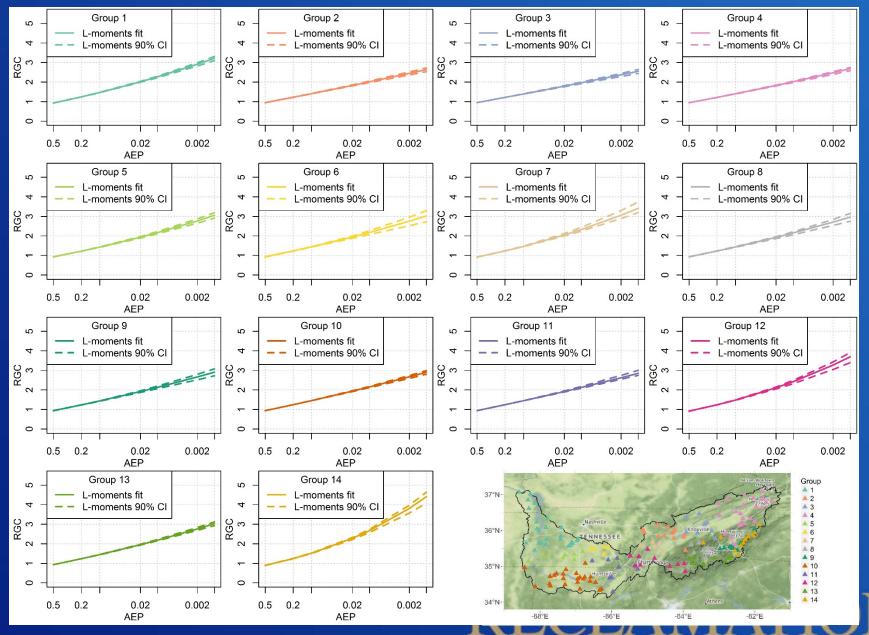
Gauges mapped to same node define homogeneous regions

Homogeneous regions need not be contiguous

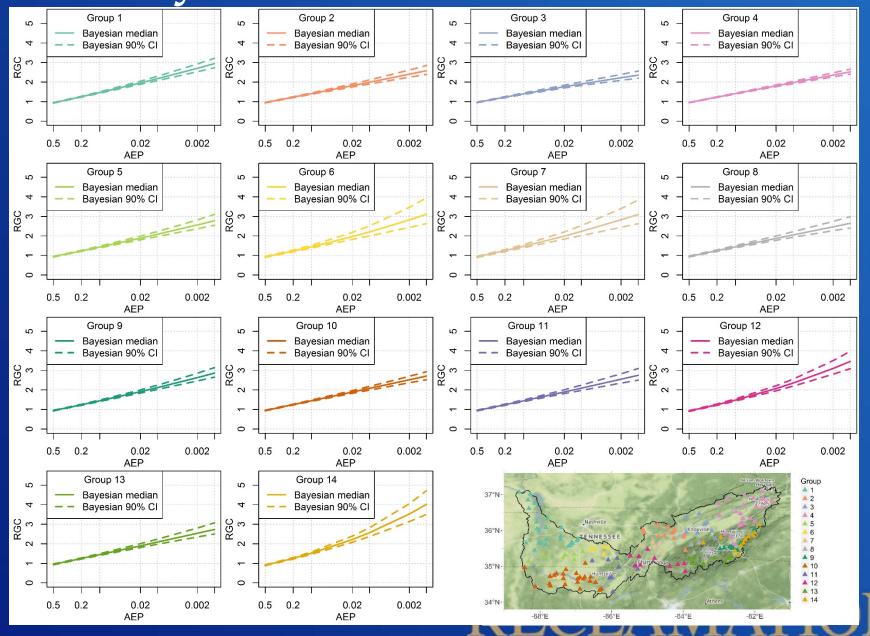
Available R packages for SOM analysis: library("som") library("kohonen")



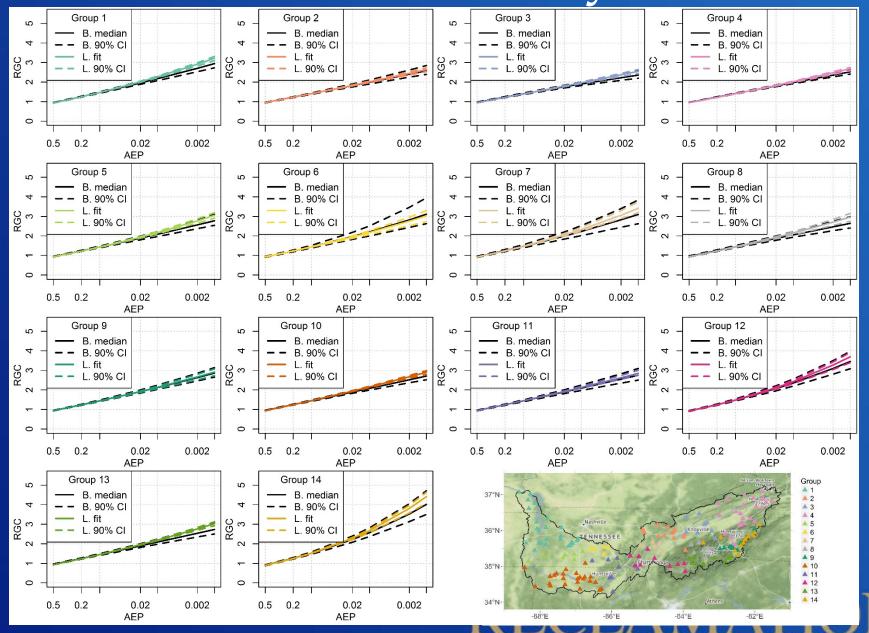
L-Moments RGCs



Bayesian Inference RGCs



L-Moments vs. Bayesian



Summary

Precipitation-frequency analyses provide users with expected return periods of heavy events
Frequency estimates vary based on estimation method

- In all but one region, L-moments bestestimates exceed Bayesian best-estimates
- Uncertainty bounds from Bayesian inference always exceed L-moments

RECLAMATIO

Additional testing is needed to understand operational benefits of Bayesian inference over L-moments

Questions?

Katie Holman <u>kholman@usbr.gov</u> +1.303.445.2571

Andrew Verdin averdin@usbr.gov +1.303.445.3647

Joseph Kanney joseph.kanney@nrc.gov +1.301.415.1920

This work was funded by the U.S. Nuclear Regulatory Commission under contract NRC-HQ-60-11-I-006

Question

How do precipitation-frequency estimates developed using the Lmoments algorithm compare with estimates developed using Bayesian inference?

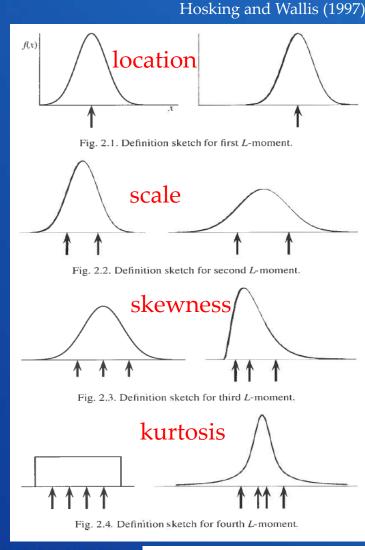
L-Statistics

System for describing probability distribution functions based on linear combinations of moments

<u>L-moments:</u>

 λ_1 =L-location (mean) λ_2 =L-scale (variability or dispersion) λ_3 =L-skewness (asymmetry) λ_4 =L-kurtosis (thickness of tail)

<u>L-moment ratios (dimensionless)</u>: $T_r = \lambda_r / \lambda_2$ $T = L-CV = \lambda_2 / \lambda_1$ (variability)



Available R packages for L-moments: library("lmom") library("lmomRFA") Bayesian Inference Bayes' Rule in a modeling framework:

$$p(\theta|\mathbf{Y}) = \frac{p(\mathbf{Y}|\theta)p(\theta)}{p(\mathbf{Y})} \propto p(\mathbf{Y}|\theta)p(\theta)$$

where $\boldsymbol{Y} = (y_1, y_2, \dots, y_n)$ and $\boldsymbol{\theta} = (\mu, \sigma, \xi)$

- Define *prior distributions* for model parameters θ (a priori knowledge)
- Consider GEV likelihood function (can consider GNO, GLO, etc.)
- Monte Carlo, acceptance criteria, builds *posterior distributions* of θ

Bayesian inference derives the *posterior* probability as a consequence of a prior probability and a likelihood function Available R packages for Bayesian inference:

library("rstan")
library("spBayes")

Bayesian inference

Prior $p(\theta)$: the strength of our belief in θ without the data *Y*

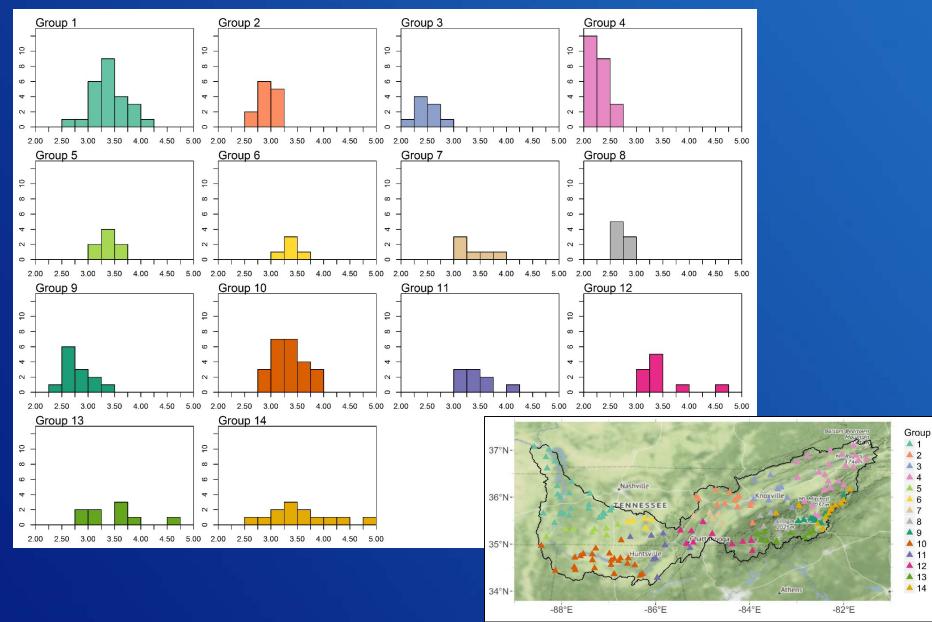
Posterior $p(\theta|Y)$: the strength of our belief in θ when the data *Y* are taken into account

Likelihood $p(Y|\theta)$: the probability that the data *Y* could have been generated by the model with parameter values θ

Evidence p(**Y**)**:** the probability of the data according to the model, determined by summing across all possible parameter values weighted by the strength of belief in those parameter values

- \rightarrow typically unknown, can be ignored with proportionality
- \rightarrow essentially a normalizing constant
- \rightarrow does not enter into determining relative probabilities (models)

SOM Results – At-Site Means



A 1

A 2

A 3 **4**

4 5

A 7 8

A 9

A 10 **A** 11 **1**2 **A** 13 **A** 14

6