Precipitation Nowcasting Leveraging
Deep Learning and HPC Systems to
Optimize the Data Pipeline
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Introduction ] — P

e Nowcasting
e Predict precipitation locations and rates at a

regional level over a short timeframe AfRyFr'E!ﬂlt""E”'GENCE
 Traditional Approach: Numerical Weather Pt A pe
Prediction
e Requires an extended lead time between
: MACHINE LEARNING
newly acquired data and release of forecasts Algorithms whose performance improve
® Deep Learning as they are exposed to more data over time
e Branch of Machine Learning based on Neural )
NGtWOTkS . | | LEARNING
e Deep implies multiple layers of computation B
between inputs and output e el lesnnfrom

e Pattern Matching
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\
Motivation CRAY

e Why is short-term nowcasting important?

e Provide reliable ride-to-work forecasts

e Predict rapid formation of severe precipitation events: Flash Flood Warning!
e Why Deep Learning?

e Traditional Nowcasting relies on NWP, slow to respond to new data

e Deep Learning learns from past rainfall patterns

e Trained models are computationally cheap to utilize
e Why HPC?

e Alot of data! Training can utilize decades of observations

e Models can be trained and inferred for small regions in parallel
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Prototype Nowcasting System — Yo

e Small: 4 stations

o KATX (Seattle), KTLX (Oklahoma City), KTLH (Tallahassee), \
KBUF (Buffalo)

e Variable sized dataset, as large as 7 years of historical
rainfall data
e Total size (raw data): 4TB
e Total size (processed): 684GB

e Examine Pipeline Performance and Bottlenecks
e Explore Nowcasting Performance via Deep Learning
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Dataset Processing

/Data Collection\

/ Transformation \ R

Historical Radar Data
(NETCDF)
Geographical Region

Days with over 0.1 inches =p

of precipitation, info from
NOAA - NCDC

Radar scans every 5-10
minutes throughout the
day

Raw radial data structure
converted to evenly
spaced Cartesian grid
(Tensors with float 32)
Resolution scaling and
clipping

Configure dimensionality
Sequencing

2 channels —

—>

(Samplinq\

* Time-series

Reflectivity, Velocity
Uses Py-ART package /

GAGHGRGH

* Inputs and =
mabe's (intel.
. andom
sampling
BigDL
\_ /
Framework

Apache Spark on
Urika-XC/GX
Implemented in
Jupyter notebooks and
Python



Prediction Modeling cRas

e Convolutional Recurrent Neural Network
e Convolutional Neural Network — Spatial Patterns
e Recurrent Neural Network — Temporal Patterns
e ConvLSTM — Convolutional Long Short-Term Memory Network

e Sequence to Sequence Outpu
e Encoder Decoder
o Use recent history to predict future changes mom M peconeR
? ? 3

®
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Pipeline: Data Processing S G
9
lterate on Dataset RNV
|

S \ - Compute Gradients :

Convert inteD Z A\'i*:\
toRDDs APACHE (nte/ g‘zéé‘z*"

. - BigDL . Z w ‘\< output layer
~— D — pquTM input layer ‘ ‘ o
\——-/ hidden layer 1  hidden layer 2

Save As NumPy Arrays Feed-Forward
Distributed

File-System




\
Pipeline: Distributed Training ==A:Yf '
: Train Unique Hyper- _ . \
APACHE gpllg Da.ta Networks for Parameter Trained )
SPQI' K y ~egion each region Optimization Networks
KATX N iigtrite \
! KTLH
\I
» — 7 KBUF
~_
~——
Distributed TLX
File-System

hidden layer 1  hidden layer 2
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Idealized Training Timeline

e Station: KATX

e Dataset size:
e 118,342 Sequences
e 101GB

e Parameters

e Systems:

e Data processing: Cray
Urika-GX — 1024 cores

e Training: Cray CS-Storm —
8 Nvidia P100 GPUs

[ \
S \
\
Process | Wall-Time | Proportion \
Download 13 hours 32%
Spark 4 hours 10%
Training 24 hours 98%
Inference | 10 seconds 0%




Scaling

Tensorflow via Cray MPI
Com. Plugin

Nvidia Tesla P100 GPUs
Batchsize of 4 samples
per device

Throughput in
Samples/Second

Count | Throughput | et l0
1 25.8 1.0
2 51.6 1.0
4 102.7 995
8 205.4 995
16 4105 994




\
Model Performance (] — PGS

e \
KATX CSI and Average Error 0 KBUF CSI and Average Error . \
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Effect of dataset size

e More data is correlated
to higher performing
prediction model 0458

0.456

e Station: KATX (Seattle) 5 0454
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Sample Prediction + Q/A

Recorded Reflectivity

t=3 t=4

Predicted Reflectivity

t=3 t=4 t=5

COMPUTE | STORE ANALYZE (@
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