

Precipitation Nowcasting Leveraging Deep Learning and HPC Systems to Optimize the Data Pipeline

Agenda

- Introduction
- Motivation
- Dataset
- Prediction Modeling
- Data Pipelines
- Results
- Q&A

ANALYZE

Introduction

Nowcasting

- Predict precipitation locations and rates at a regional level over a short timeframe
- Traditional Approach: Numerical Weather Prediction
- Requires an extended lead time between newly acquired data and release of forecasts

Deep Learning

- Branch of Machine Learning based on Neural Networks
- Deep implies multiple layers of computation between inputs and output
- Pattern Matching

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

COMPUTE

TORE

ANALYZE

Motivation

• Why is short-term nowcasting important?

- Provide reliable ride-to-work forecasts
- Predict rapid formation of severe precipitation events: Flash Flood Warning!

• Why Deep Learning?

- Traditional Nowcasting relies on NWP, slow to respond to new data
- Deep Learning learns from past rainfall patterns
- Trained models are computationally cheap to utilize

• Why HPC?

- A lot of data! Training can utilize decades of observations
- Models can be trained and inferred for small regions in parallel

Prototype Nowcasting System

Small: 4 stations

- KATX (Seattle), KTLX (Oklahoma City), KTLH (Tallahassee), KBUF (Buffalo)
- Variable sized dataset, as large as 7 years of historical rainfall data
 - Total size (raw data): 4TB
 - Total size (processed): 684GB
- Examine Pipeline Performance and Bottlenecks

Explore Nowcasting Performance via Deep Learning

Dataset Processing

Data Collection

- Historical Radar Data (NETCDF)
- Geographical Region
- Days with over 0.1 inches of precipitation, info from NOAA – NCDC
- Radar scans every 5-10
 minutes throughout the
 day

ANALYZE

COMPUTE

Copyright 2018 Cray Inc.

6

Prediction Modeling

Convolutional Recurrent Neural Network

- Convolutional Neural Network Spatial Patterns
- Recurrent Neural Network Temporal Patterns
- ConvLSTM Convolutional Long Short-Term Memory Network

Sequence to Sequence Encoder Decoder Use recent history to predict future changes Imput Imput Imput Imput

Pipeline: Data Processing

Pipeline: Distributed Training

Idealized Training Timeline

• Station: KATX

• Dataset size:

- 118,342 Sequences
- 101GB
- Parameters
- Systems:
 - Data processing: Cray Urika-GX – 1024 cores
 - Training: Cray CS-Storm 8 Nvidia P100 GPUs

Process	Wall-Time	Proportion
Download	13 hours	32%
Spark	4 hours	10%
Training	24 hours	58%
Inference	10 seconds	0%

COMPUTE

TORE

ANALYZE

Scaling

- Tensorflow via Cray MPI Com. Plugin
- Nvidia Tesla P100 GPUs
- Batchsize of 4 samples per device
- Throughput in Samples/Second

Device Count	Throughput	Scaling Efficiency
1	25.8	1.0
2	51.6	1.0
4	102.7	.995
8	205.4	.995
16	410.5	.994

COMPUTE

ANALYZE

Model Performance

AMS 2018

Effect of dataset size

- More data is correlated to higher performing prediction model
- Station: KATX (Seattle)

Years	Size (GB)	Sequences
1	40	43,171
3	109	118,342
5	143	155,337
7	217	235,301

COMPUTE

STORE

ANALYZE

Sample Prediction + Q/A

Recorded Reflectivity

