Students of Purdue Observing Tornadic Thunderstorms for Research (SPOTTR): A Severe Storms Field Work Course at Purdue University
Robin L. Tanamachi1, Daniel T. Dawson II1, Michael E. Baldwin2, and Loran Carlton Parker2
1Department of Earth, Atmospheric, and Planetary Sciences and 2Evaluation and Learning Research Center

1. Motivation
At Purdue University, atmospheric science undergraduate and graduate students in the Earth, Atmospheric, and Planetary Sciences (EAPS) department have consistently expressed a strong interest in working closely with professors on research projects involving severe storms. Leveraging this desire to enhance student learning of atmospheric science, a four-week summer “severe storms field work” course was created within Purdue EAPS in 2016. The primary objectives of the Students of Purdue Observing Tornadic Thunderstorms for Research (SPOTTR) course were:

- For students to learn current severe weather forecasting and observation techniques.
- For students to experience an authentic atmospheric science field program, using research-grade observing instruments, and to continue to work with these data if they chose to do so;
- To expose students to diverse career paths in severe storms research and forecasting;
- To enhance their learning of severe storms forecasting and research through reflective journaling and other active learning exercises.

The approach of taking atmospheric science students on an extended field excursion to Tornado Alley to forecast and observe severe storms is not new (Godfrey et al. 2011; Barrett and Woods 2012). In a typical course participants (6–20 students and two or more instructors) travel to Tornado Alley in one or more large passenger vehicles, each containing at least one experienced instructor, who guides the students in the field as they select a target storm to intercept and observe safely. The principal differences between our course and previous ones are (1) integration of a suite of research-grade meteorological instrumentation, (2) a reflective journaling active learning exercise conducted at the end of each day, and (3) the inclusion of career awareness activities such as a career “gallery walk.”

2. Course design / schedule

Weeks 1 & 2: Preparation

- 100 UTC sounding. Get caught in a convective updraft and hit a peak excursion rate of 80 km/h.
- 1800 UTC sounding. Landing at 1800 UTC.

Week 3: Field work

- Visiting the National Weather Center
- Weather Briefing
- Mobile radar observations: Doppler radar observations of the 23 May 2016 Woodward, Oklahoma tornadoes.
- Storm spotter training (Hodur et al. 2017).
- Stealth radar observations over volumes spanning storm depth (up to 12 km). Surface observations with handheld weather meters.
- Soundings: Vertical cross-section radar observations over volumes, storm depth (up to 12 km).
- Surface observations with handheld weather meters.
- Observations of deep convective storms:
 - Drifting;
 - Drop-size distribution measurements with doppler radars;
 - Storm-scale radar observations over volumes, storm depth (up to 12 km);
 - Storm-scale radar observations over volumes spanning storm depth (up to 12 km).

Week 4: Wrap-up

- Career “gallery walk”
- Daily weather Anonymity
- Tornado observation with mobile radar
- Storm spotter training

Weeks 5 & 6: Preparation

3. Lessons Learned / Future Plans
The 2016 SPOTTR course provided valuable insights that led to improvements to more formal assessment of the 2017 course. The 2017 SPOTTR students were given two questionnaires, one at the beginning and one at the end of the course, that were designed to assess changes in their knowledge levels, confidence in field work techniques, and career aspirations. With the caveat that these results are anecdotal because of the small class size (five students), we offer tentative conclusions and future plans below:

- Continue using research-grade meteorological instrumentation. All five students either strongly agreed or agreed with the statement, “The use of research-grade equipment enhanced my research experience,” and also indicated that the field work had contributed either “a good amount” or “a great deal” to their SPOTTR experience.
- Allow two weeks for instruction prior to field work. During the 2017 course, scheduling constraints forced the class to take their field trip during Week 2 rather than Week 3. Students felt that this compressed timeline was detrimental to their understanding and retention of the information presented. Nonetheless, four of the five students reported that their severe weather forecasting skills had improved at the conclusion of the 2017 SPOTTR course. In the future, we plan to implement more objective assessment of change in severe weather forecasting skill.
- Continue to incorporate professional site visits and career awareness activities. All five students indicated that visits to sites like the NWC and SWRLR had contributed either “a good amount” or “a great deal” to their SPOTTR experience. Four of the five students indicated that course the had improved their awareness of career opportunities available to them, as well as career tracks that they could specialize in. Students asked for additional information, e.g., salary for the various career tracks, that will be obtained and conveyed in future versions.
- Retain reflective journaling exercises. All of the students indicated that keeping a daily journal (or log) of the day’s events was a beneficial activity. Four out of five students either agreed or strongly agreed with the statement, “My SPOTTR journal helped me clarify my thoughts about my experience.” In written responses, students reported that journaling helped them remember details, organize their thinking, and connect principles learned in the classroom to the severe weather forecasting and scenarios that they encountered. In addition, three of the five students reported an increase in their skill at keeping a daily journal as a result of the SPOTTR course.

Acknowledgments

This work was supported by EAPS departmental funds to T. Todd Chenoweth. The acronym SPOTTR was inspired by the University of Alabama at Huntsville’s Integrative Collaborative Research Environment (ICoRE). The authors gratefully acknowledge all students and staff who participated in the SPOTTR course over the years, especially our 2016 and 2017 students. Special thanks to Steve Frasier and William Seedorf of the Weather Prediction Center, who generously gave the storm spotter training to the SPOTTR students. Dr. Heberling and Dr. Sean Waugh developed the PIPS probes in collaboration with the National Oceanic and Atmospheric Administration (NOAA). All of the students contributed to the SPOTTR experience. Four of the five students indicated their severe weather forecasting skills had improved at the conclusion of the 2017 SPOTTR course. In the future, we plan to implement more objective assessment of change in severe weather forecasting skill.

References

Kolb, D. A., 1984: Experiential learning: experience as the source of learning and development. 2nd ed. Scott, Foresman, Glenview, IL, 432 pp.