Ground-truth of a 1-km downscaled NLDAS air temperature product using the York City Community Air Survey

Heather Y. G. Eliezer¹, Sarah Johnson¹, William L. Crosson², Mohammad Z. Al-Hamdàn³, Tabassum Insaf³, ¹Department of Environmental Surveillance and York City Department of Health and Mental Hygiene, New York, NY; ²Universities Space Research Association, National Space Science & Technology Center, Huntsville, AL; ³Department of Epidemiology and Biostatistics, School of Public Health, State University of New York at Albany

Downscaled NLDAS-NYCCAS minimum temperature comparisons

Motivation

• The frequency of extreme heat days has risen with the increase of anthropogenic global warming.
• Public health decision making and messaging depend on reliable air temperature data.
• In an urban public health context currently available data lack sufficient spatial resolution.
• Prior ground-truthing has not been done for a downscaled NLDAS (North American Land Data Assimilation System) dataset for air temperature in a highly variable urban landscape such as NYC.

Data sources

The New York City Community Air Survey (NYCCAS): Air temperature records

NYCCAS has the most comprehensive geographic coverage of any urban air monitoring network in the U.S. with 150 monitors in a 790 square kilometer area (Matte et al., 2013).

NLDAS meteorological re-analysis 1x1 km² downscaled temperature data

• Historical NLDAS land-surface model temperature data derived from the National Centers for Environmental Prediction (NCEP) NARR (Al-Hamdàn et al., 2014; Mesinger, 2006; NOAA/ U.S., 2005, Cosgrove et al., 2003).
• 12x12 km² NLDAS dataset (Al-Hamdàn et al., 2014) downscaled to 1x1 km daily maximum/minimum air temperature using 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) (Crosson and Al-Hamdàn, 2014).
 • LST grids created previous 8-day composite MODIS-LST products
 • Calculated NLDAS air temperature standard deviation for geographic ‘neighborhood’
 • Normalized departure for 3x3 grid cells in Version 1, 5x5 in Version 2
 • Version 2 improved the slope slightly and decreased the error for 2009 and 2010 comparisons.

Summary statistics

<table>
<thead>
<tr>
<th>Version</th>
<th>r</th>
<th>R²</th>
<th>RMSE</th>
<th>Mean Abs Error</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1</td>
<td>0.91</td>
<td>0.83</td>
<td>2.37</td>
<td>2.02</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>0.92</td>
<td>0.85</td>
<td>1.96</td>
<td>1.67</td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
<td>0.92</td>
<td>0.85</td>
<td>4.57</td>
<td>4.18</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>0.92</td>
<td>0.85</td>
<td>4.04</td>
<td>3.65</td>
</tr>
<tr>
<td>2009</td>
<td>12-km</td>
<td>0.22</td>
<td>0.05</td>
<td>1.93</td>
<td>1.75</td>
</tr>
<tr>
<td>2010</td>
<td>12-km</td>
<td>0.12</td>
<td>0.01</td>
<td>3.92</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 1. Summary statistics showing correlation coefficients, coefficient of determination, root-mean-square error, mean absolute error, and slope for daily minimum comparisons. All numbers are for the 1 km downscaled model averaged centroids except for those labeled 12 km.

Summary and conclusions

• Strong improvement of the downscaled NLDAS model in capturing the spatial variability of temperature across NYC neighborhoods over the native 12 km resolution.
• Very good overall agreement between downscaled NLDAS modeled minimum temperatures with NYCCAS ground station measurements.
• NYCCAS measured warmer temperatures on average than the downscaled NLDAS temperatures, with the best agreement in cases of lower average minimum temperatures and lower vegetative cover.
• The higher resolution is needed for coastal urban applications.
• Allows for discernment of neighborhood level differences in temperature and areas with heterogeneous land cover.
• The nationwide dataset will be available at the Centers for Disease Control Prevention (CDC) Environmental Public Health Tracking Network.

Acknowledgements and references

NYC Health