Evaluation of ambient ammonia measurements from a research aircraft using a fast-response QC-TILDAS spectrometer with active passivation

Ilana B. Pollack¹, J. Lindaas¹, J. R. Roscioli², M. Agnese², and E. V. Fischer¹

¹Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, ²Aerodyne Research Inc., Billerica, Massachusetts

Contact: ipollack@rams.colostate.edu

Some examples of why we need high-sensitivity, fast-response NH₃ measurements:

Test flights were conducted in the Colorado Front Range in Sept 2017 in preparation for WE-CAN in 2018.

Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen

For WE-CAN, the instrument must be able to:

- Measure large, rapid gradients in gas-phase NH₃
- Measure over a range of altitudes
- Measure in the boundary layer (turbulence, turns)
- Measure in clouds
- Measure in smoke (ash, particles)
- Perform in a hot aircraft cabin

This work is supported by the National Science Foundation through grant number AGS-1650786 as part of the WE-CAN field study.

A commercial NH_3 instrument was optimized for the C-130 with WE-CAN objectives in mind.

Individual components are commercially available from Aerodyne Research Inc.

To meet these goals, we tested a few unique features in flight.

To reduce motion sensitivity:

 Laser objective is vibrated at ~200 Hz to wash out etalon fringe motion

2) TILDAS mounted on customdesigned vibration isolation plate

To ensure fast time response:

 Active passivation with a strong perfluorinated base that prevents adsorption of both water and basic species to sampling surfaces

1H,1H perfluorooctylamine

Data collected while overblowing NH_3 -free air showed an in-flight detection limit of 200 pptv at 1 Hz.

- No detectable change in zero signal level with altitude (0-5 km a.g.l.) nor with fluctuations in cabin pressure (±10 Torr) and temperature (±5°C)
- Zero levels measured with a chemical scrubber compared well with a synthetic bottled source of NH₃-free air, but only when followed in series by 4 Angstrom molecular sieve

The 200 pptv detection limit allowed measurement over a range of altitudes.

Variations in NH₃ associated with turbulence and turns are within the detection limit.

Straight and level in the boundary layer

During turns

Changes in NH₃ are \leq 50 pptv during turbulence and turns (within 200 pptv detection limit).

But, as often happens in field work, we had complications just before our most interesting test – passivation.

Our instrument was compromised by contamination from the chemical scrubber.

- Cool and rainy weather during the test flight period were unfavorable conditions for the chemical scrubbing media
- > We did not diagnose the problem until it was too late
- > The instrument could not be properly cleaned in time prior to our third and final flight

But, as often happens in field work, we had complications just before our most interesting test – passivation.

Our instrument was compromised by contamination from the chemical scrubber.

Not recommended

Learn more at my poster this afternoon

- Cool and rainy weather during the test flight period were unfavorable conditions for the chemical scrubbing media
- > We did not diagnose the problem until it was too late
- > The instrument could not be properly cleaned in time prior to our third and final flight
- > In the end, we learned a lot from this...

Adding passivant to a "contaminated" instrument brings back the time response.

Step change response initiated by switching off calibration gas at t₀ while measuring NH₃-free air:

- Under these "contaminated" conditions, NH₃ accumulation on sampling surfaces was severe In fact, it was so bad that we couldn't measure it – the red time profiles are after one cleaning!
- NH₃ accumulation should be avoidable during normal operation (even in polluted environments) with frequent checks of the step-change time response and cleanings
- Adding passivant can recover instrument response when cleaning is not possible (e.g., when contamination occurs in flight or just prior)

Adding passivant to a "contaminated" instrument brings back the time response.

Step change response initiated by switching off calibration gas at t₀ while measuring NH₃-free air:

- NH₃ accumulation should be avoidable during normal operation (even in polluted environments) with frequent checks of the step-change time response and cleanings
- Adding passivant can recover instrument response when cleaning is not possible (e.g., when contamination occurs in flight or just prior)

Adding passivant enabled our "contaminated" instrument to continue to collect useful, high-quality data in flight.

Flight tracks, winds, and PTR data indicate that the same feedlot was sampled on approach 3 and 4.

An interesting observation: the amount of NH_3 recovered from surface ejection adds up.

PTR detected ~85% of NH₃ observed on approach 4 during approach 3

So, is passivation of NH₃ instruments worth the cost?

Answer: It depends on how/what/where you want to measure...

- Recommended when rapid (> 1 Hz) collection of NH₃ is mission critical (e.g., measuring fluxes, sampling from aircraft or another mobile lab)
 1 oz. of passivant at \$1400 lasts for 120 flight hours
- Can be useful (insurance policy) for maintaining optimum operation in NH₃-rich/humid environments or when contamination of sampling surfaces is likely, yet frequent cleaning is not possible
- May not be necessary for fast operation (even in polluted environments) if sampling surfaces can be cleaned whenever a step-change response to NH₃ shows time response has degraded
- Does not seem cost effective for measurements where response time is not critical (e.g., sites reporting hourly data)

Learn more at my poster (#184) this afternoon!