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AWS Deep Learning AMI: https://aws.amazon.com/amazon-ai/amis/
Earth on AWS: https://aws.amazon.com/earth/

Google Big Query: https://cloud.google.com/bigquery/public-data/
Google Earth Engine: https://earthengine.google.com/datasets/
IBM NOAA Earth Systems Data Portal (NESDP): https://noaa-crada.mybluemix.net/
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