Introduction

- Early 1960s: silicon-cell pyranometers introduced
 - Much lower price, but less accurate than traditional thermopile pyranometers
 - Narrow spectral response (360-1120 nm) means they require a clear view of the sky and over-estimate solar radiation on cloudy days
 - Low price greatly increases their use in environmental research projects
- 2017: low-cost, digital thermopile pyranometers introduced by Campbell Scientific and Apogee Instruments (CS320)
 - Broad spectral response (385-2105 nm)
 - Correctly measure solar radiation on cloudy days
 - Affordable to environmental research and mesonets without sacrificing accuracy and flexibility
 - Not all pyranometers are of the same quality.
 - Three pyranometer categories established by the World Meteorological Organization (WMO) and the International Organization for Standardization (ISO)
 - The ISO categories named "secondary standard," "first class," and "second class" closely correspond to the WMO categories named "High quality," "Good quality," and "Moderate quality" (Jarraud 2014) (Table 1).

Comparison Method

- Solar radiation data were collected with a Campbell Scientific CR1000 datalogger with an AM16/32B multiplexer and the following co-located pyranometers:
 - CS320 digital thermopile pyranometers (n=10)
 - CS300 silicon-cell pyranometers (n=20)
 - SP Lite 2 silicon-cell pyranometers (n=5)
 - L200 silicon-cell pyranometers (n=5)
 - L200R silicon-cell pyranometers (n=5)
- 4 ISO secondary standard pyranometers:
 - Kipp & Zonen CM 11
 - Kipp & Zonen CMP 11
 - Hukseflux SR20
 - EKO MS-80

Results

- Overall, data from the recently introduced CS320 showed strong agreement with secondary standard pyranometers and a marked improvement over silicon-cell pyranometers (Figs. 1-3)
 - As expected, the greatest differences were during cloudy to partly-cloudy days where differences between silicon-cell and secondary standard pyranometers were often 20-20 whereas the CS320 data were most often within 2% (Figs. 1, 2)
 - The relatively large differences as expressed in percentages (Fig. 1b) at low solar angle (morning and evening) are of small absolute magnitude
- A good relationship between data from secondary standard versus the CS320 is virtually 1:1 with small variance (Fig. 3)

Table 1. ISO and WMO pyranometer standards compared to CS320 specifications

<table>
<thead>
<tr>
<th>ISO and WMO Standard</th>
<th>First Class</th>
<th>Second Class</th>
<th>CS320 Thermopile Pyranometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time (1%))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Offset A</td>
<td>± 0.5 mW/m²</td>
<td>± 1.5 mW/m²</td>
<td>± 5 mW/m²</td>
</tr>
<tr>
<td>Zero Offset B</td>
<td>± 2 mW/m²</td>
<td>± 4 mW/m²</td>
<td>± 8 mW/m²</td>
</tr>
<tr>
<td>Uncertainty (up to 50%)</td>
<td>± 0.5 %</td>
<td>± 1.5 %</td>
<td>± 3 %</td>
</tr>
<tr>
<td>Mounting block</td>
<td>240 mm</td>
<td>240 mm</td>
<td>240 mm</td>
</tr>
<tr>
<td>Tilt Response</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>Daily totals</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Uncertainty (95% confidence level)</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Spectral range</td>
<td>300 to 3000</td>
<td>300 to 3000</td>
<td>385 to 2105 m²</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 W/m²</td>
<td>5 W/m²</td>
<td>1 W/m²</td>
</tr>
</tbody>
</table>

Summary and Additional Features

- Data from the CS320 compare favorably with high-end pyranometers (Figs 1-3), offering a strong improvement in measurements over silicon-cell pyranometers
 - Priced similarly to silicon-cell (Table 2)
 - Internal heater to reduce errors from dew, frost, rain, and snow
 - Dome shape head allows sensor to shed dew and rain
 - SDI-12 digital output, compatible with all current Campbell Scientific dataloggers and other dataloggers compliant with the SDI-12 standard
 - Calibration data stored in sensor – no changes to program required after routine re-calibrations
 - Built-in tilt sensor that simplifies installation, diagnostics, and remote troubleshooting
 - Designed for long-term stability
 - Not intended for markets that require ISO certification

References: