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How Many Herring? 



Image Recognition Solution: 
6 herring found in 0.01 seconds 
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Objective 

S  To automate the detection and counting of  relevant fisheries 
species in image and video data through image recognition 

S  Relevant fisheries species: 

Alewife Herring /Blue 
Back Herring 

 (Alosa pseudoharengus / 
Alosa aestivalis)  

Atlantic Sea 
Scallops 

(Placopecten 
magellanicus)  

Skates 
(Rajidae) 

Flatfish, such as 
flounder 

(Pleuronectiformes)  

Various round 
fish species 



Background 

“The world’s finest wilderness lies beneath the waves …” 
— Robert Wyland, Marine Life Artist 

S  Fisheries populations have a large impact on the U.S. 
economy 
S  The U.S. fishing industry contributes about $90 billion and 1.5 

million jobs to the U.S. economy [4] 
S  In 2014, 17% of  the U.S. fisheries were classified as overfished 

[4] 

S  Therefore, NOAA Fisheries Management is interested in 
monitoring relevant species populations 



Current Technique: 
 

Gather 

S  Habitat Mapping Camera System (HabCam) 

 

 

1. Gather [underwater photographs] 



Current Technique: 
 

Manually Annotate 

2. Manually Annotate [underwater photographs] 

 

 



Current Technique: 
 

Extrapolate 

3. Extrapolate [population estimates] 

[1] Chang et al. 2017  



Applying Image 
Recognition 

S  Can image recognition be used to accurately detect and count 
fisheries species?  

S  How many iterations of  training are needed to yield accurate 
results? 

S  How does the quality of  annotations used in training impact 
accuracy? 



Appling Image Recognition: 
 

Convolutional Neural Networks 

S  Loosely based on biological neural networks 

[3] 



Applying Image Recognition: 
 

Methodology – Gather & annotate 



Train YOLOv2 Real-Time Object Detection algorithm: 

Applying Image Recognition: 
 

Methodology – Train 

Original training set: 5,063 images Adjusted training set: 5,063 images 



Run trained YOLOv2 algorithm on 300 test images 

Applying Image Recognition: 
 

Methodology – Test 

S  False 
positives? 

 

S  False 
negatives? 



Results: 
 

Metrics 

S  Intersection Over Union (IOU) ( % ) 

S  Recall ( % ) 

S  Precision ( % ) 

 recall = ​𝑡𝑝/𝑡𝑝 + 𝑓𝑛  

precision = ​𝑡𝑝/𝑡𝑝 + 𝑓𝑝 = ​𝑡𝑝/𝑛  



Results 

S  Can image 
recognition be 
used to 
accurately detect 
and count 
marine species?  



Results 

S  How many iterations of  training are needed to yield 
accurate results? ~2000 



Results 

S  How does the quality of  annotations used in training impact 
accuracy? 

IOU values averaged 
across all objects (N 
= 489) in both the 
adjusted and original 
training sets. 



Conclusion 

S  Image recognition is a viable solution to detecting and counting fisheries 
species in photographic data 

S  You Only Look Once (YOLO) v2: Real-Time Object Detection software can 
obtain as high as 93% average recall 
S  According to [2] Chang et al. 2016, imperfect automated annotation can be 

combined with human annotation 

S  We recommend annotation guidelines be strictly followed 

S  Deliverables: training sets, trained weights, programs for counting fisheries 
species 

Implications: 

S  NOAA Fisheries can use these techniques to optimize time and resource 
allocation  

 



Future Work 

S  Continue applying image recognition to herring 
S  Of interest to: NOAA Fisheries, state agencies, as well as 

regional fisheries councils and local municipalities 

S  Image recognition is a novel approach 

S  Develop graphical user interface for end users 

S  Test other image recognition algorithms, such as Faster R-
CNN and Mask R-CNN 
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