Determining Favorable Atmospheric Conditions for Waterspout Development in South Florida

lan Lee^{*} NOAA/NWS, Detroit/Pontiac, MI

Stephen Konarik NOAA/NWS, Miami, FL

Background

- Waterspouts frequently occur in South Florida waters within 60 nm of the coast, sometimes making landfall
- Lack of identifiable radar signatures combined with rapid genesis presents challenges from a warning perspective
- Climatologically, low-level light easterly winds typically most favorable for waterspouts across South Florida waters

a) Map of waterspout locations used in study; b) Top 6 most favorable locations for waterspouts in United States

Objectives

- Develop a predictive equation that improves upon the current NWS Miami waterspout calculator (below)
- Assess the importance of various thermodynamic and kinematic parameters conducive for waterspouts

 Shift:
 O
 Am-1
 Hm

 1)
 Is MEAN wind speed below 15000 feet:
 •

 2)
 Is the MEAN wind direction below 15000 feet:
 •

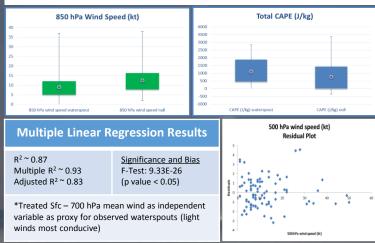
 3)
 Did yesterday have waterspout activity, and is the synoptic pattern the same for today?
 Yes

 4)
 Is a convergence line present, or expected to develop (based on radar, satellite, etc.)?
 Yes
 No

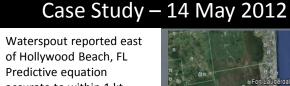
 Calculate Risk
 Clear Form
 View Log
 View Log
 View Log

Acknowledgments

Thanks to Kevin Scharfenberg and Dr. Pablo Santos for their insight and support throughout this research.


*To contact: ian.lee@noaa.gov

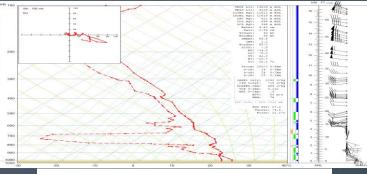
Data Collection and Analysis


- 130 days analyzed (78 waterspout, 52 null) from 2003-2007
- Collected data utilizing RAOB software for over 40 thermodynamic and kinematic variables using 1200 UTC KMFL observed soundings
- Box and whisker plots created to identify trends for waterspout days vs. null days
- Correlations performed to identify possible predictive variables
- Multiple linear regression analysis run from correlation findings to create a predictive equation for waterspout potential

Results

- Regression analysis shown to be statistically significant
- Box and whisker plots revealed several variables with little difference between waterspout vs. null days

 $\begin{array}{l} \textbf{Sfc-700 hPa mean wind (Waterspout Potential)} = -2.66 + 0.44(VGP) + 0.42(0-3 \ \text{km shear}) \\ + 0.04(0-3 \ \text{mean T-T}_d) + 0.48(0-1 \ \text{mean T-T}_d) + 0.3(500 \ \text{hPa wind speed}) + 0.13(\text{sfc-700 mean T-T}_d) \\ - 0.04(\text{Bulk rich shear}) - 0.86(0-3 \ \text{km EHI}) + 0.000868(\text{LCL height}) + 0.0019(\text{LI}) + 0.02(0-3 \ \text{km SRH}) \\ - 0.26(0-6 \ \text{km shear}) + 0.34(0-1 \ \text{km shear}) + 0.03(0-500 \ \text{m shear}) \\ \end{array}$


accurate to within 1 kt
Also had favorable lowlevel SE wind direction

Predicted 4.97 Observed 4.75

Sfc – 700 hPa mean wind (kt)

Map of observed waterspout report

14 May 2012 1200 UTC KMFL observed sounding; sounding created using RAOB software

Conclusions

Based on results, NWS Miami will be adapting its local waterspout calculator to include predictive equation **Future Work:** Further data collection (2008-present); additional verification of predictive equation; Principle Component Analysis to further bolster results