Spatial Structure Evaluation of Unsupervised Deep Learning for Atmospheric Data

David John Gagne II, Sue Ellen Haupt, and Doug Nychka National Center for Atmospheric Research AMS Annual Meeting

Motivation

- Random forests and other traditional machine learning models require statistical aggregation of spatial data
- Statistical aggregation does not encode spatial structure information
- Encoding spatial weather information may provide further gains in accuracy
- Two methods for encoding spatial information
 - Principal Component Analysis (AKA Empirical Orthogonal Functions)
 - Deep Neural Networks

Convolutional Neural Networks

Example of a convolutional neural network for classifying dog species from LeCun et al. 2015, doi:10.1038/nature14539

- Convolutional layers consist of convolutional feature maps
- Each feature map is applied over subsets of input to find matching features
- Convolutions in upper layers identify combinations of simpler features
- Final layer connects convolutional features with probability of event

Generative Adversarial Networks

Neural network training method to encode and sample from multivariate data distributions Originally proposed by Goodfellow et al. (2014)

Generator: Creates synthetic samples drawn from training data based on low dimensional vector.

Critic: Determines which samples are real or synthetic. Adaptive loss function.

https://upload.wikimedia.org/wikipedia/en/e/e1/Ratatouille-remy-control-linguini.png http://www.imdb.com/character/ch0009859/mediaviewer/rm988253440

Gaussian Spatial Random Fields

- Gaussian random spatial fields are white noise multiplied by a specified covariance structure
- GANs are trained to generate random fields
- Evaluated by reversing the process and comparing GAN noise with white noise spatial covariance

Results: Gaussian Random Fields

- Lower t-scores indicate a more realistic random field
- Activation function has the biggest impact on spatial realism
- Increasing the number of filters can improve representation but also makes fitting the network harder

liters 158	10.4	16.2	15.5						
H . VOD	- 7.8	20.3	17.7						
UI 32	6.9	19.1	15.4						
U 128	9.9	19.1	17.7	9.9	10.8	10.4			
Input 32	6.9	20.3	15.4	6.9	12.4	10.7			
ч 9 16	7.8	16.2	15.5	12.3	7.8	11.9			
0.1 X	6.9	20.3	15.4	6.9	12.4	13.8	12.3	6.9	13.8
ropout	10.4	16.3	22.1	12.7	11.0	10.4	11.0	12.7	10.4
ם 0.0	7.8	16.2	15.5	9.9	7.8	10.7	7.8	10.7	9.9
	leaky A	relu ctivatio	selu n	32 Min.	64 Conv. F	128 ilters	16 Ger	32 I. Input :	128 Size

NCAR Ensemble Storm Patches

Run Dates: 3 May – 3 June 2016 22 training days (81652 storms) 10 testing days (32577 storms) Storm Extraction: Identified updrafts with vertical velocity > 10 m/s Storm Patch: 32x32 box centered on updraft track Target: If the model max hail size over the

following hour exceeded 25 mm

Machine Learning Procedure

Severe Hail Verification

Model	AUC	BSS	BS Reliability	BS Resolution
Logistic Mean	0.748	0.107	0.00339	0.0192
Logistic GAN	0.777	0.172	0.00272	0.0276
Logistic PCA	0.837	0.285	0.00185	0.0425
Convolutional Neural Net	0.854	0.350	0.00333	0.0540

Feature Rankings

Spatial Means

Variable	Coefficient
500 mb Height	-2.50
850 mb Height	1.36
850 mb Dewpoint	1.07
850 mb Temperature	0.89
850 mb U-Wind	-0.58
850 mb V-Wind	-0.44
700 mb Temperature	0.34
700 mb Dewpoint	0.25
700 mb U-Wind	0.20
500 mb V-Wind	-0.14

Convolutional Neural Net

Variable	Score
500 mb Height	134.6
850 mb Temperature	73.9
850 mb Height	66.8
850 mb Dewpoint	60.9
700 mb Height	33.2
850 mb U-Wind	29.4
700 mb U-Wind	28.8
850 mb V-Wind	26.6
500 mb Temperature	21.3
700 mb Dewpoint	21.14

Generating an Exemplar Hailstorm

Exemplar Conv Net Hailstorm

Filled Contours: Geopotential Height

Green: Dewpoint

Red: Temperature

Exemplar Conv Net Hailstorm

Filled Contours: Geopotential Height

Red: Temperature

Green: Dewpoint

13

Exemplar Conv Net Hailstorm

Filled Contours: Geopotential Height

Red: Temperature

Green: Dewpoint

14

Summary

- Convolutional neural networks and generative adversarial networks can encode spatial information into a form amenable for classification
- The choice of activation function and number of convolutional filters has the largest impact on realistic GAN generation of random fields
- Convolutional neural networks perform the best at encoding spatial storm data for hail prediction
- Physical information about the exemplar neural network representation of a storm can be extracted through backpropagation on the input image
 Contact Information

Contact Information Email: <u>dgagne@ucar.edu</u> Twitter: @DJGagneDos Github: djgagne