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Abstract
While the information estimgtign .theory b.ased on Bayes’ theor.em i.s The model bias arlslng fl‘OIIl physwal schemes 0nal X
developed as various data assimilation algorithms for state estimation, it . S - \ o E | zos
has also been applied to model parameter estimation. The resulted 2@ —msu - |®) :ﬁﬁs&ifﬁis » Similar as Tardif et al. 2014, initial condition = Zoz
observation-estimated parameters can mitigate model bias. Parameter 22” M &!‘ ” " ﬁ | 20* | con(.htlon are set such that the moc.le.l SOIUUOHS 0-2M oa
estimation 1s very promising for a coupled climate model to constrain its f: 18 | are 1n oscillatory mode, with an initial MOC 0 . . . e . " . . ]
climate drift in climate simulation and prediction. However, given the 316 ‘ 3" | strength of 15 Sv. S B e
existence of numerous model parameters, how to systematically perform Q14 } ﬁ ‘ { ’ | é:: ) B s s owme  Ten o wma s s T
parameter estimation 1s a research topic. Linking model sensitivities :z ) l l ’ \ v » Here the truth model uses the THSI4 m s
with the signal-to-noise ratio of parameter estimation, this study 5 M - scheme, while the assimilation model uses : s
develops a physically-based methodology of simultaneous multiple J 1 Q/ the BWW&9 scheme. 2 2 22
parameter estimation for coupled climate models with biased physics. o o0 a0 00 a0 0 60 700 0 100 2000 o 4000 000 6000 7000 ol
While either all the parameters within the biased physical scheme or S T T T Tmemms 1> Power  spectrum  of the MOC  strength ! . . . . Loy - . . |
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only the most influential physical parameters being optimized, can
oreatly mitigate the model biases induced by biased physics, better
results for climate estimation and climate prediction will be obtained
when using this physically-based methodology of sitmultaneous multiple
parameter estimation. These results provide a guideline when the real
rvations are assimilated into a coupled general circulation model | ,
S}]f;teigclu(()iez imi)ersfsect phyes?cal schemespfor iriproving the performance | “fl‘ Fig 1. Difference of MOC Stren.gth and Power
h \ “ Spectrum between the models using the THS14

of climate estimation and prediction by multiple parameter estimation. % oo 200 s s s s 1w 4w w0 e e w and BWWS9 hydrological cycle. by biased physics and enhance the performance of AMOC analyses.

Time(/Year) Period/Year

» While either all the parameters within the biased physical scheme or
Background Model Sen5|t|V|t|es W|th respect to phy5|cal parameters only the most influential physical parameters being optimized. can

» Parameter estimation is very promising for a coupled climate model - » For each parameter, the standard deviation of greatly mitigate the model biases induced by biased physics, better

—hr BN 5% Uppr BT between 3000 and 4500 years assimilation Time-Year Time-Year
| starting from the initial condition with the Fig 4. Time series of the RMSEs or MOC strength during 50 to 55 years and

THS14 and BWWSR9 scheme. And the 230 to 250 years for different PO experiments. (The results of MPE7~MPE13
L. C . are very closely to that of MPE6 and not shown.)
characteristic variability time scales are

about 300 and 500 years, respectively. Conclusion

-
N
\

—y
o
———
Of-M
o
o

0.2

Error-MOC/Sv
o]
e
um

(2]
e ——

E=N
] T T

» Parameter optimization is able to mitigate the model biases induced
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to constrain its climate drift in climate simulation and prediction. 02| perturbation is 5% of the default value. All results for climate estimation and climate prediction will be obtained
02 100 ensemble model runs are started from the when using this physically-based methodology of simultaneous
» In traditional PO scheme, neither all parameters or the most sensitive sl biased initial condition, the assimilation multiple parameter estimation.

one being simultaneously optimized can get the best results for
climate estimation and prediction.

model 1s integrated for 100 years and
sensitivity are calculated using the outputs
from the last 50 years.

» The most sensitive parameters are including

MOC-Stand Deviation
o

» In this Low-order coupled model case, the parameters whose
sensitivities account nearly 90% of the sensitivities of the MOC
strength with all 13 parameters being estimated can get the optimal
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MOC-Standard Deviation-Percentage

» Given the existence of numerous model parameters and linking the
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o, e e, . . . . . 23 24 25 26 27 28 29 30 31 32 33 34 35 23 24 25 26 27 28 29 30 31 32 33 34 35 . <4
model sensitivities with signal-to-noise ratio, how to systematically Parametor et in calculation of Q2 ,, which represents the results. Also in order to mitigate the dependence of the results on the
imation i ' N R N R ’ model, we are testing this method on an intermediate coupled model
perform parameter estimation 1s a research topic. 00919 - o1 T s latent heat flux to the atmosphere from the ) g P

23 24 25 26 27

surface of low-latitude ocean. and a CGCM.

Percentage 0.0155 0.0175 0.0155 0.0155 0.0175
stand Devi 01693 04003 01689 01694 01904 Fig 2. The time-averaged sensitivity and its percentage Auth()rs
33 34 35 . .

Methods

> A low-dimension analogue of the North Atlantic climate model, TR 0.5 e e of the MOC strength with respect with all 13 [1]: College of Automation, Harbin Engineering University, Harbin
involving interaction between large-scale atmospheric circulation and Stand pev 01964 0038 0098 parameters including in BWW89 scheme for Qs. 150001. China
ocean states driven by the variability of the Atlantic meridional  Cor : :

: eulation (MOC din this studv. (Tardif et al Impact Of mU"'.I parameter estlmatlon on MOC strength estimation [2]: Center for Climate Research and Department of Atmospheric and
overturning circulation ( ). was used in this study. (Tardif et al. - Oceanic Sciences, University of Wisconsin-Madison, Madison, WI
2014) » In order to mitigate the dependence of the results on the 53706. USA

> Different schemes for the volume averaged equivalent salt flux Qg (a oz} 1 initial condition, each parameter optimization experiment 3]: K,ey Laboratory of Physical Oceanography, MOE. China, Ocean
simplified representation of the hydrological cycle ). THS14 scheme will be repeated for 20 times starting from 20 different University of China, Qingdao, 266003, China
(Robert Tardif et al. 2014): A simple parameterization for Qg 1s 5"l 1 initial conditions. o | [4]: Atmospheric Sciences Program, Department of Geography, Ohio
derived by assuming that runoff and mean transport terms are s | | » 0 represent that all of the parameters within the biased State University, Columbus, OH, 43210, USA
constant and by postulating that the eddy water vapor transport physical scheme are perturbed but not estimated. And 1 '5]: Laboratory for Climate and Ocean-Atmosphere Studies (LaCOAS)
depends linearly on the eddy energy (Y* + Z*) as in Stone and Yao 005 - | denotes that all these parameters are simultancously fbepartment of Atmospheric and Oceanic Sciences, School of Physics
(1990): Qg =C; + C,(Y? +Z?); BWWS89 Scheme: the surface perturbed and estimated. Peking University, Beijing, 100871, China
Salinity ﬂux iS further Simpliﬁed by replaCing With QS - menSO, 0 0 0.2745 0.4946 0.6491 0.7963 0.8882 0.9062 0.9237 0.9412 0.9567 0.9722 0.9877 0.9969 1.0 > The parameters WhOse SenSItIVItleS account nearly 90% Of

1 _ Aoz 0 : e . the sensitivities being estimated can get the lowest RMSEs

Mgy = = Eg : = —Bo + B1T.02 + B2Ts; with Ty, = i e  S—
Aen 2 pOLCCQLHZ QrH 2 Bo + B1T.o2 + P27 52 k= 8‘23(22 | o of MOC strength estimation. References
4+ B T* € T* . 293032 KX 0.6491 0.0077 . . - . . L
2 27 +02 21x01 T TH—— 0 115 0756 oomss Fig 3. The RMSEs of the MOC value for different PO experiments Tar.dﬁj, R., G. J. .Haklm, .and C. Snyder, 2014: Coupled atmosphere—ocean data
» DAEPC is employed to compute the model states and perform e od0nd 09062 00287 ; . . assimilation experiments with a low-order model. Clim. Dyn., 43, 1631-1643.

E . ey , . [FETECETETE TE R o 0:s: 09237 00311 using different sensitivity percentages. Here the blue bar represents Birchfield G. E. M. W iH W 1990: A lod here b
parameter optimization. AYy; = (yk + Ay, i) ~ Yk » A2 = EETE0E 0 — 10> 03567 035 the mean value of the RMSEs of the 20 cases starting from 20 rentield, G. L., M. Wyant, and H. Wang, - /A coupled ocean-atmosphere box
p ’ ’ ’ ECFETETETETE /T M 0.10:2 09722 00356 . - - model of the Atlantic Ocean: A bimodal climate response. J. Mar. Syst., 1, 197-208.

A yk Cov(Z;, Yk) AY I({) e — S different initial conditions. And red bar stands for the upper/lower Zhang, X., S. Zhang, Z. Liu, X. Wu and G. Han, 2015: Parameter Optimization in an
— S Err e 0.1073 1.0 0.0429 . < 4 > A > = ? ’ ’ ? )
(Gk k)z l (O 1) ! — — level of the uncertainty of RMSEs (standard deviation of 20 cases). Intermediate Coupled Climate Model with Biased Physics. J. Climate, 28, 1227-1247.




