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Abstract
While the information estimation theory based on Bayes’ theorem is
developed as various data assimilation algorithms for state estimation, it
has also been applied to model parameter estimation. The resulted
observation-estimated parameters can mitigate model bias. Parameter
estimation is very promising for a coupled climate model to constrain its
climate drift in climate simulation and prediction. However, given the
existence of numerous model parameters, how to systematically perform
parameter estimation is a research topic. Linking model sensitivities
with the signal-to-noise ratio of parameter estimation, this study
develops a physically-based methodology of simultaneous multiple
parameter estimation for coupled climate models with biased physics.
While either all the parameters within the biased physical scheme or
only the most influential physical parameters being optimized, can
greatly mitigate the model biases induced by biased physics, better
results for climate estimation and climate prediction will be obtained
when using this physically-based methodology of simultaneous multiple
parameter estimation. These results provide a guideline when the real
observations are assimilated into a coupled general circulation model
that includes imperfect physical schemes for improving the performance
of climate estimation and prediction by multiple parameter estimation.

Background
Ø Parameter estimation is very promising for a coupled climate model
to constrain its climate drift in climate simulation and prediction.

Ø In traditional PO scheme, neither all parameters or the most sensitive
one being simultaneously optimized can get the best results for
climate estimation and prediction.

Ø Given the existence of numerous model parameters and linking the
model sensitivities with signal-to-noise ratio, how to systematically
perform parameter estimation is a research topic.

Methods
Ø A low-dimension analogue of the North Atlantic climate model,
involving interaction between large-scale atmospheric circulation and
ocean states driven by the variability of the Atlantic meridional
overturning circulation (MOC). was used in this study. (Tardif et al.
2014)

Ø Different schemes for the volume averaged equivalent salt flux Q" (a
simplified representation of the hydrological cycle ). THS14 scheme
(Robert Tardif et al. 2014): A simple parameterization for Q" is
derived by assuming that runoff and mean transport terms are
constant and by postulating that the eddy water vapor transport
depends linearly on the eddy energy 𝑌$ + 𝑍$ as in Stone and Yao
(1990): 𝑄( = 𝐶+ + 𝐶$ 𝑌$ + 𝑍$ ; BWW89 Scheme: the surface
salinity flux is further simplified by replacing with 𝑄( = 𝑚-.𝑆0,
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𝑄8:,$< , 	𝑄8:,$< = 	−𝛽0 + 𝛽+𝑇∗<$ + 𝛽$𝑇2$ with 𝑇2$ =
𝐴$ + 𝐵$𝑇∗<$ + 𝐶$𝑇∗<+ .

Ø DAEPC is employed to compute the model states and perform
parameter optimization. ∆𝒴F,GH = 𝒴IF𝒰 + ∆𝒴F,GK − 𝒴F,𝒾𝒫 , ∆𝒵G,O =
PQ,R
S

(UR,R
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Fig 1. Difference of MOC strength and Power
Spectrum between the models using the THS14
and BWW89 hydrological cycle.
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Fig 2. The time-averaged sensitivity and its percentage
of the MOC strength with respect with all 13
parameters including in BWW89 scheme for Qs.

Fig 4. Time series of the RMSEs or MOC strength during 50 to 55 years and
230 to 250 years for different PO experiments. (The results of MPE7~MPE13
are very closely to that of MPE6 and not shown.)

Ø Parameter optimization is able to mitigate the model biases induced
by biased physics and enhance the performance of AMOC analyses.

Ø While either all the parameters within the biased physical scheme or
only the most influential physical parameters being optimized, can
greatly mitigate the model biases induced by biased physics, better
results for climate estimation and climate prediction will be obtained
when using this physically-based methodology of simultaneous
multiple parameter estimation.

Ø In this Low-order coupled model case, the parameters whose
sensitivities account nearly 90% of the sensitivities of the MOC
strength with all 13 parameters being estimated can get the optimal
results. Also in order to mitigate the dependence of the results on the
model, we are testing this method on an intermediate coupled model
and a CGCM.
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Ø Similar as Tardif et al. 2014, initial condition
condition are set such that the model solutions
are in oscillatory mode, with an initial MOC
strength of 15 Sv.

Ø Here the truth model uses the THS14
scheme, while the assimilation model uses
the BWW89 scheme.

Ø Power spectrum of the MOC strength
between 3000 and 4500 years assimilation
starting from the initial condition with the
THS14 and BWW89 scheme. And the
characteristic variability time scales are
about 300 and 500 years, respectively.

Model	Sensitivities	with	respect	to	physical	parameters

28 29 30 31 32

Percentage 0.0919 0.2745 0.2201 0.1472 0.1545

23 24 25 26 27

Percentage 0.0155 0.0175 0.0155 0.0155 0.0175

Stand Devi 0.1693 0.1903 0.1689 0.1694 0.1904

33 34 35

Percentage 0.0180 0.0031 0.0091

Stand Devi 0.1964 0.0335 0.0995

Ø For each parameter, the standard deviation of
perturbation is 5% of the default value. All
100 ensemble model runs are started from the
biased initial condition, the assimilation
model is integrated for 100 years and
sensitivity are calculated using the outputs
from the last 50 years.

Ø The most sensitive parameters are including
in calculation of 𝑄8:,$< , which represents the
latent heat flux to the atmosphere from the
surface of low-latitude ocean.

RMSE Percentage Spread
MPP 0.2354 0.0 (assuming) 0.0025
29 0.2065 0.2745 0.0060
29-30 0.1764 0.4946 0.0065
29-30-32 0.1620 0.6491 0.0077
29-30-32-31 0.1134 0.7963 0.0268
28-29-30-31-32 0.1050 0.8882 0.0268
28-29-30-31-32-33 0.1034 0.9062 0.0287
27-28-29-30-31-32-33 0.0995 0.9237 0.0311
24-27-28-29-30-31-32-33 0.1031 0.9412 0.0335
29 ,30,32,31,28,33 , 27,24,26 0.1037 0.9567 0.0345
29 ,30,32,31,28,33, 27,24, 26,23 0.1042 0.9722 0.0356
29 ,30,32,31,28,33, 27,24, 26,23,25 0.1045 0.9877 0.0366
29 ,30,32,31,28,33, 27,24, 26,23,25,35 0.1068 0.9969 0.0391
13-param 0.1073 1.0 0.0429
CTL 1.7018 1.2885
SEO 0.3733 0.0999

Fig 3. The RMSEs of the MOC value for different PO experiments
using different sensitivity percentages. Here the blue bar represents
the mean value of the RMSEs of the 20 cases starting from 20
different initial conditions. And red bar stands for the upper/lower
level of the uncertainty of RMSEs (standard deviation of 20 cases).

Ø In order to mitigate the dependence of the results on the
initial condition, each parameter optimization experiment
will be repeated for 20 times starting from 20 different
initial conditions.

Ø 0 represent that all of the parameters within the biased
physical scheme are perturbed but not estimated. And 1
denotes that all these parameters are simultaneously
perturbed and estimated.

Ø The parameters whose sensitivities account nearly 90% of
the sensitivities being estimated can get the lowest RMSEs
of MOC strength estimation.
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(c) BWW89-THS14
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(b) THS14-Ens
BWW89-Ens
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(d) MPP MPE-1 MPE-2 MPE-3
MPE-4 MPE-5 MPE-6 Truth
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(d) Power Spe-THS14 95% Upper limit-THS14
Power Spe-BWW89 95% Upper limit-BWW89


