Climate Variability and Malaria over the Sahel Country of Senegal

98th Annual Meeting | Austin, Texas | 7-11 January 2018

Ibrahima DIOUF

CPC International Desks NOAA Center for Weather and Climate Prediction
5830 University Research Court, College Park, Maryland 20740.

Co-authors: W. M. Thiaw, B. Rodríguez-Fonseca, A. Deme, J. A. Ndione, and A. T. Gaye
Area of study

The Ferlo is a sylvopastoral region, with a most sahelian climate conditions.

Barkedji, station référence au Ferlo:
Lon: 14° 53
Lat: 15° 57

Map showing locations of the stations used in this study. The study is extend to the Sahel region for the seasonal malaria predictability using the S4CAST model

98th Annual Meeting | Austin, Texas | 7-11 January 2018
CLIMATE AND MALARIA RELATIONSHIP

Essential parameters

Pathogen agent: plasmodium
Vector of transmission: anopheles
Host: human

Climate drivers of malaria

Rainfall: provides breeding sites for mosquitoes.
Temperature: larvae growth, vector survival, egg development in vector, parasite development in vector.

Climate parameters can influence malaria transmission by tree (3) ways: 1) distribution and abundance of anopheles vectors, 2) possibility and success of the sporogonic cycle of the parasite inside the vector, 3) and then the modulation of human-vector (Lindsay et al, 1996)
DATA AND METHODS

Observations

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Period</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria cases</td>
<td>2001–2016</td>
<td>Dakar, 14.73° N, 17.5° W</td>
</tr>
</tbody>
</table>

Reanalysis Inputs

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Period</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>20th Century Reanalysis Project daily averages</td>
<td>1910–2009</td>
<td>2.5° × 2.5°</td>
</tr>
<tr>
<td>NCEP</td>
<td>1960–2013</td>
<td>2.5° × 2.5°</td>
</tr>
<tr>
<td>ERA40 [58]</td>
<td>1958–2001</td>
<td>2.5° × 2.5°</td>
</tr>
<tr>
<td>ERA Interim</td>
<td>1979–2015</td>
<td>1.5° × 1.5°</td>
</tr>
</tbody>
</table>

CHIRPS: Climate Hazards Group InfraRed Precipitation with Stations; NCEP: National Centers for Environmental Prediction; ERA: European Center for Medium Range Weather Forecast reanalysis.

Different reanalysis datasets used to perform the malaria incidence with their full periods, grid and references.

98th Annual Meeting | Austin, Texas | 7-11 January 2018
This study consists of observations and simulations of malaria parameters using the Liverpool Malaria Model (LMM).

The LMM is a dynamical malaria model driven by daily time series of rainfall and temperature.

(Hoshen et al., 2004)

In addition, we employ the S4CAST model (Sea Surface temperature based Statistical Seasonal Forecast model) to explore the malaria outbreaks predictability over Sahel.

We use observed SST as predictor field due to its influence on rainfall and temperature, and then on malaria incidence. We examine the leading MCA covariability mode to evaluate and quantify the predictability of malaria in relationship with SST. (Suárez-Moreno et Rodríguez-Fonseca, 2015)
FINDINGS ON MALARIA IN SENEGAL

RESULTS

Diouf et al., 2017 in International Journal of Environmental Research and Public Health (IJERPH)

98th Annual Meeting | Austin, Texas | 7-11 January 2018
FINDINGS ON MALARIA IN SAHEL

Hovmöller diagram on the annual cycle of the incidence superimposed on the annual precipitation cycle in the Sahel (a), Hovmöller diagram on the interannual variability of the incidence (b), spatial distribution of the malaria parameters in the Sahel in September-October-November (SON) (c) of malaria incidence averaged over the Sahel from 1910 to 2009 with 20thCR reanalysis

98th Annual Meeting | Austin, Texas | 7-11 January 2018
RELATIONSHIPS SST AND SEASONAL IMPACT ON MALARIA IN THE SAHEL

RESULTS

Column 1: Correlation map (a, Pacific, b, Atlantic) for the first mode of co-variability for the non-stationarity period and lag5 (Apr-May-Jun). Column 2: Correlation map (c and d, Sahel incidence on Sept-Oct-Nov) for the first mode of co-variability for the non-stationarity period and lag5 (Apr-May-Jun). The rectangles show the regions selected for the predictor and predictor fields and considered in the MCA analysis. The values are plotted for regions where the level of statistical significance under a MonteCarlo test is greater than 90%.

98th Annual Meeting | Austin, Texas | 7-11 January 2018
Conclusion

- High malaria transmission in September-October-November corresponding to two months after the peak of rains in August;
- North-South latitudinal gradient of malaria transmission according to the spatial variability of rainfall;
- The relationship between observed and simulated malaria parameters is presented, but there are some discrepancies between reanalysis.
- A negative anomalous SST signal in the Atlantic (cooling) is associated with a positive anomalous malaria incidence signal (high malaria transmission) on the Sahel, this result is coherent with the findings in relation to Atlantic SSTs and precipitations in the Sahel.
- A negative anomalous SST signal in the Pacific (cooling) is associated with a positive and strong anomalous malaria incidence signal (high malaria transmission) on the Sahel.
- In the framework of applying forecast on health issue, these results are expected to be useful for decision makers who plan public health measures in affected countries in Sahel and elsewhere.
Diagnostics: Malaria Predictability

Data:
- Malaria data obtained from the PNLP (National Program for Malaria Control in Senegal)
- Daily Rainfall and temperature extracted from meteorological stations, satellite, and reanalysis

Tools:
- Liverpool Malaria Model (LMM) and VECTRI model (VECtor borne disease community model of ICTP, TRIeste)
 - Canonical Correlation Analysis (CCA)
 - Sea Surface based Statistical Seasonal Forecast (S4CAST)

Operational Real-Time Climate Information for Malaria
- Provide access to real time climate information of potential benefit to the health sector
- Work with the health and meteorological communities in Africa to generate periodic experimental risk maps for malaria for Senegal and West Africa
THANK YOU