Microphysical and Near-Storm Environmental Control on the Maintenance of the 15 July 2015 MCS Frederick Iat-Hin Tam, Ming-Jen Yang, Wen-Chau Lee Department of Atmospheric Science, National Taiwan University, Taipei, Taiwan; National Center for Atmospheric Research, Boulder, Colorado

1. Introduction

• A case study on the 15 July 2015 nocturnal MCS (Fig.1) is used here to explore the possible nocturnal MCS maintenance in a **low**shear environment.

• A robust **hydrometeor recirculation** (Siegel and Van den Heever 2013) process favors MCS maintenance by strengthening the mid-level updraft.

• Pre-MCS low-level moisture distribution is also important

2. Methodology

• Pre-MCS environment sampling: High-frequency rawinsonde launches, surface observation and AERIoe thermodynamic profile retrieval data (Turner 2016) at FP5 (MCS_N) and MP2 (MCS_S), University of Wyoming King Air measurements. • Dual-polarization level-II data from Goodland, Kansas and NOXP mobile radar data -> Non-meteorological signal filtering (Thresholds: *Q*_{hv}>0.8, SW (Spectrum Width)<8.0)

• QC is performed with SOLO interactive editor (Oye et al. 1995). Processed data are plotted with the open-source Py-ART package (Helmus and Collis 2016).

3. Pre-MCS environment 3.1 Evolution of environmental instability - MCSN - FAR - MCS₅ 5 200 NO 100 `-\\-----\\}-----1250 1500 1750 2000 2250 2500 2750 1000 CAPE (J/kg)

Fig.2 (a) MLCAPE-MLCIN evolution in pre-MCS_N <blue>, pre-MCS_S <red>, far environment <green> derived from sounding data. Numbers represent the approximate rawinsonde launch time. (b)(c) Temperature-Dewpoint profile in pre-MCS_N and pre-MCS_S environment

3.2 Difference in low-level moisture vertical distribution

Fig.3 (a) Dewpoint depression profile of pre-MCS_N
 σ and pre-MCS_S environment
 σ (b) Wyoming King Air (UWKA) flight track at the edge of MCS_N and (c) Flight Data, The variables plotted are: Flight Level Altitude, θ_{e} , pressure, vertical wind speed, relative humidity and eddy dissapation rate.

Fig.1 Reflectivity CAPPI and RAP 850mb wind (vector) at 0400UTC, 15 July 2015. The deployment location of PECAN mobile and fixed assets are also shown.

Fig.4 Radar observation of MCS_s along a 240° cross section at 0415UTC. (a) Radial Velocity, with approximate freezing level height marked.

5. WRF simulation results

5.1 Experimental Design

• Two simulations are performed to test the microphysical sensitivity: **FULL** (No change applied to 2M NSSL scheme) **GHNS** (For graupel class, set mass-weighted fall speed (Eq.1a) for N_{graupel})

5.2 MCS stuctural comparison

Fig.7 Line-averaged cross section of simulated (a) FULL (b) GHNS MCS (Shading: Buoyancy, Black Contour: 20dBZ, Blue contour: Rainwater mixing ratio, Vector: Line-Normal Wind)

4. Microphysical structure

• NE-SW cross section

(Fig.4a,b) through MCS_s shows strong inflow layer lifting. Rear inflow of MCS_s is strong and relatively deep, reaching ~30 m/s near MCS freezing level. **ZDR column** at the edge of strong convective cells (Fig.4b) is also indicative of a strong updraft.

• E-W cross section (Fig.5a,b) through MCS_N illustrates a lack of strong inflow layer lifting, weaker rear inflow, weaker and shallower reflectivity core.

Fig.6 (a) Eq1a: Mass-weighted fall speed; Eq1b: Number-weighted fall speed (b) Schematic Diagram of Hydrometeor Recirculation Process (Siegel and Van den Heever 2013) (c) Model Setting

5.3 CFAD Analysis

Fig.8 Vertical Velocity Contoured Frequency by Altitude Diagrams (CFADs) for (a) FULL (b) GHSS

EOL.

6. Take-home

Strong rear inflow -> Enhanced midlevel updraft -> Favorable for long-lived MCS

• 2M simulations indicate a sensitivity of recirculation process to **size-sorting**.

• Subtle changes in low-level moisture availability can be consequential

	Domain	זט	UZ	05
	Grid Size	27km	9km	3km
	Vertical Levels	42	42	42
	Cumulus	Kain-Fritsch	Х	Х
\backslash	Microphysical	x	2M NSSL	2M NSSL
V	PBL	YSU	YSU	YSU

7. Acknowledgement • This research is supported by the Ministry of Science and Technology of Taiwan under Grant MOST-106-2111-M-002-004 • The authors would like to thank Mr. J.E. Miao, Mr. Y.C. Wu, Ms. W.H. Chi for helpful discussions and suggestions. PECAN data are provided by NCAR/

Corresponding author: Frederick Iat-Hin Tam, ft21894@gmail.com