Sensitivity of G-IV Dropsonde Configuration on Tropical Cyclone Prediction using a Regional OSSE Framework

Kelly Ryan¹,², Lisa Bucci¹,², Javier Delgado¹,², Robert Atlas³, Shirley Murillo²

MOTIVATION

Study the impact of G-IV dropsondes on tropical cyclone analyses and forecasts

DATA DESCRIPTION

- Dropsone deployed via NOAA G-IV aircraft:
 - Temperature, moisture, pressure and wind observations
 - 100 observations per dropsonde
 - Deployed in various configurations relative to TC size

OSSES for Hurricanes

- **Observing System Simulation Experiments (OSSES):**
 - Aim to quantify the potential impact of a proposed observing system on tropical cyclone analyses and forecasts
 - Can also be used to assess current observing systems and methods for data retrieval

Regional OSSES for Hurricanes

The regional OSSE system developed at NOAA/AOML and UM/RSMAS uses synthetic observations produced from the Nature Run and assimilates them to create analyses used by a high-resolution regional forecast model.

EXPERIMENTS AND RESULTS

- Each experiment included the assimilation of simulated conventional and satellite data with 120-hour forecasts launched for each analysis. Impact experiments include various configurations of G-IV dropsonde deployments during the 36 hours leading up to rapid intensification.
 - Control: conventional and satellite observations
 - Circumnavigation: control plus G-IV dropsondes at a radius of 3 x radius of 34-knot winds
 - Concentric: control plus G-IV dropsondes at radii of 1.5 and 3 x radius of 34-knot winds
 - Star: control plus G-IV dropsondes at radii of 1.5 and 3 x radius of 34-knot winds

- Positive impact on track forecasts using all configurations:
 - Analysis track errors improve by about 40 km for all experiments compared to control and are dominated by differences in TC-environment interactions
 - Forecast track errors improve significantly for all lead times, with the most significant improvement produced by the concentric circumnavigation configuration
 - Experiments adding G-IV dropsonde data capture the strength and western extent of the subtropical ridge, where the control experiment forces the vortex to embed within the ridge

FURTHER ANALYSIS

Near-storm environment differences

- Figure 6. Impact of G-IV dropsonde data from concentric experiment on geopotential height field (top), geopotential height field from nature run (bottom left), and geopotential height from concentric configuration experiment (bottom right).

Future Regional OSSE System Upgrades

- New state-of-the-art Basin-Scale Nature Run
 - Large domain of uniform high-resolution
 - Allows for multi-Typhoon interactions

- Flexibility
 - Use of multiple nature runs
 - Implementation of multiple DA systems
 - Capability of evaluating model physics/parameterization schemes

Contact:

Kelly.Ryan@noaa.gov

¹Univ. of Miami/CIMAS, Miami, FL
²NOAA/AOML/Hurricane Research Division, Miami, FL
³NOAA/AOML, Miami, FL

AMS Annual Meeting, 7-11 January 2018

Austin, Texas