
Integrating high-resolution static data into WRF for
real fire simulations∗

Jonathan D. Beezley†, Adam K. Kochanski‡, Jan Mandel†
†Department of Mathematical and Statistical Sciences, University of CO Denver

‡Department of Meteorology, University of Utah

1. Introduction

As computers become more powerful, there
is increasing interest in simulating smaller
scale phenomena than typically associated with
mesoscale weather forecasting. In particular, a
typical WRF-Fire simulation occurs at mesh res-
olutions on the order of 10 m or less. Even the
highest resolution surface data provided with
WPS is several hundred times coarser. For
these fine scale domains, the ability to import
custom datasets into WPS is essential for the
initialization of a realistic simulation (Mandel
et al. 2011; Jordanov et al. 2011).

Resources such as the USGS’s seamless
data server that provide open access to high
quality surface data are generating a large in-
terest in initializing WRF simulations using cus-
tom datasets. WPS provides a mechanism for
these datasets through a simple binary file for-
mat that is described in the WRF technical doc-
umentation (Wang et al. 2010); however, there
is no standard API or GIS software capable of
writing to it. Users who lack sufficient technical
knowledge are currently unable to process this
data into WRF.

Prior work related to WRF-Fire has lead to
small utilities that are able to convert standard
GIS GeoTIFF files into Geogrid’s binary file for-

∗Paper 6.3, Ninth Symposium on Fire and Forest Meteo-
rology, Palm Springs, CA, Americal Meteorological Society,
October 2011. This research was supported by NSF grant
AGS-0835579 and by NIST Fire Research Grants Program
grant 60NANB7D6144.

mat. TopoGrabber1 is a Python application
based on this work that is capable of download-
ing and converting topological data automati-
cally. More recently, modifications to Geogrid
have been written allowing it to read GeoTIFF
files directly. Current versions of this software
and documentation described here are main-
tained at http://www.openwfm.org.

2. Geogrid binary format

Geogrid is a component of the WRF pre-
processor responsible for interpolating sur-
face data onto the simulation’s computational
grid. It reads surface data from a simple
binary format consisting of a single text file
specifying metadata and a number of binary
files containing a rectangular block of data
known as a tile. All of these files must re-
side in a single directory with the text file
named index and the binary tiles formatted as
%05i-%05i.%05i-%05i specifying the index
range contained by each file. For example, a
tile containing 500 columns and 250 rows could
be named 00001-00500.00001-00250. The
tile size is specified globally, so all of the tiles
must be exactly the same size. Each tile con-
tains an unformatted array of integers with word
size, signedness, and byte order specified by
the index. The values are specified row-wise
from bottom to top or top to bottom depending

1http://laps.noaa.gov/topograbber

1



on which row ordering is specified. The row or-
dering controls how the data is ordered in each
tile only; tiles are always indexed from bottom to
top.

Because Geogrid processes each tile of data
individually without special conditions for inter-
polating grid nodes located near tile bound-
aries, multi-tiled datasets must have a halo re-
gion where the tiles overlap each other. The
size of the halo region is given in the index as
tile bdr and specifies number of extra rows
and columns provided on each side of the tile.
The extra data in the tiles is provided implic-
itly without changing the tile indices given by
the file names. For example, a tile named
00501-01000.00251-00500 with a border
width of 3 would actually contain columns 498–
1003 and rows 248–503. Note that all tiles con-
tain the border on all edges, even those tiles ly-
ing on the boundaries of the global dataset.

The storage format of the binary files is specif-
ically designed so that a single dataset can be
used on any platform regardless of word size or
byte order; however it only allows for integer val-
ues. To account for non-integer data, the index
also contains a global scaling factor by which all
elements of the dataset are multiplied. The scal-
ing factor provides the ability to represent fixed
point numbers with a global precision. Other pa-
rameters specified in the index provide geoloca-
tion, field description, units, and a number that
represents missing values in the dataset.

3. GeoTIFF API and storage
formats

The GeoTIFF image specification is an exten-
sion to the Tagged Image File Format (TIFF)
that adds support for georeferencing data. At
its core, a TIFF image is just a string of un-
formatted binary data; however before the data
begins in the file, there is a header contain-
ing a block of metadata that describes how the
bits should be interpreted. The metadata is or-
ganized as a series of key/value pairs, which

halo
halo

tile (1,1)

Figure 1: The Geogrid tile format with tile size
8 and halo width 4. Dots represent pixels in the
data and rectangles enclose all pixels in a tile.
The circled dot is at pixel coordinate (1,1).

can be accessed through a standard API call
to the function TIFFGetField. These keys
are called “tags” in the TIFF interface and are
mapped to two byte unsigned integers by a pre-
processing directive contained in tiff.h. The
baseline TIFF standard specifies the meaning of
a number of common tags, which must be sup-
ported by all TIFF readers. For example, the tag
TIFFTAG IMAGEWIDTH provides the total width
of the image in pixels.

The TIFF image specification is very flexi-
ble allowing for many different formats including
floating point, vector, and complex pixel types.
In addition, the data can be organized within the
file in a variety of ways allowing efficient access
patterns for any number of applications. The
most common storage convention is scanline
based, where rows are stored from left to right
sequentially from top to bottom. GeoTIFF files
are often stored in contiguous tiles much like
the Geogrid format, except that rows and tiles
are ordered from top to bottom. Other formats

2



such as multi-dataset files and multi-resolution
pyramid formats are also support, but less often
used in practice. The read and write routines in
libtiff are optimized for access to individual tiles
or scanlines sequentially, but also support ran-
dom access to these blocks for uncompressed
images.

A number of extensions to the baseline stan-
dard have been defined; GeoTIFF is one of
these extensions adding tags that define ge-
ographic coordinate transformations and re-
lated enumerated codes (Ritter and Ruth 2000).
When linked with the PROJ.4 library, libgeotiff
also provides a method to convert pixel coordi-
nates into geographic coordinates directly. This
allows a user to find, for example, the latitude
and longitude of the bottom left pixel of the im-
age.

4. Modifying Geogrid to read
GeoTIFF images

Adding GeoTIFF support to Geogrid without
major code refactoring requires creating a layer
over the libgeotiff interface to emulate the Ge-
ogrid file access routines. First, this emula-
tion requires a metadata inquiry routine that re-
trieves all available information normally pro-
vided by the index. Second, there must be a
layer above the actual data retrieval allowing
Geogrid to request access to an arbitrary tile of
data, which involves reading one or more blocks
of data from the file and assembling them to-
gether.

The metadata provided by the tags in a Geo-
TIFF file do not necessarily contain all of the
information required by Geogrid. In addition,
metadata in a GeoTIFF file may be inaccurate
or interpreted incorrectly. To account for this,
the implementation uses a standard index file
to supplement and optionally override the meta-
data in the GeoTIFF file. Geogrid reads index
files in the subroutine get source params. If
the parameter, geotiff is set to a file name in
the index, then the file is opened by the Geo-

TIFF interface, and all that was not specified
in the index is filled in by metadata from the
GeoTIFF header. The actual metadata used
is then output to geogrid.log allowing the
user to confirm that the parameters are correct.
Several parameters are never provided by the
GeoTIFF interface and must be set by the user
in the index when necessary. These include
description, units, type, category min,
and category max. The tile size and border
are set to reasonable defaults, but can be set
to provide more efficient access to the data de-
pending on the internal storage format.

When Geogrid requires a tile of data, it re-
quests a range of indices which is used to con-
struct the file name of the tile. In the GeoTIFF
interface, this index range is passed to a sub-
routine along with a handle to the open Geo-
TIFF file. The indices are converted from the
bottom to top row order used by Geogrid into
the storage format specified by the GeoTIFF
file. Then one or more tiles or scanlines are
read from this file and assembled into a con-
tiguous tile as requested by Geogrid. Any pix-
els requested by Geogrid that lay outside the
file are filled in with a constant associated with
the missing value parameter. The GeoTIFF
file is kept open throughout the program’s exe-
cution so that duplicate reads are cached in vir-
tual memory.

The modified source in Geogrid is only com-
piled in when the user specifies a path to a Geo-
TIFF installation prefix through the environment
variable GEOGRID. When the path is not given,
WPS will still compile and run just as it would
using the original source. This behavior is in-
tended to make the extra features available to
those who need it, without adding extra prereq-
uisites for those who do not.

5. Conclusion

The implemented changes to Geogrid allows a
user to import a USGS GeoTIFF dataset directly
into the WRF workflow without the (often) diffi-

3



(13,7)

(23,14)

tile (2,2) tile (3,2)

tile (2,1) tile (3,1)

(1,1)

Figure 2: For GeoTIFF tile size 9 ordered from bottom to top and global pixel coordinates 13–23 ×
7–14 requested, the output is constructed from the tiles highlighted in blue dashed lines.

cult and error prone procedure of converting the
data. The GeoTIFF specification is commonly
used and can be provided as output from a wide
range of GIS applications. The interface is com-
piled in as an optional component and is use-
ful for both experienced GIS users with com-
plicated workflows and those who just want to
replace a single data source. The implementa-
tion allows overriding erroneous metadata with-
out modification to the source images and effi-
cient access to the data. In addition, reading
GeoTIFF files directly eliminates many of the
limitations inherent in the Geogrid file format.
Floating point data is read at full precision, and
very large BigTIFF files (more than 2 GB) can
be used even if they exceed 100, 000 pixels in a
single axis. The current version of this software
can be accessed from the repositories listed at
openwfm.org.

References

Jordanov, G., J. D. Beezley, N. Dobrinkova, A. K.
Kochanski, and J. Mandel, 2011: Simulation

of the 2009 Harmanli fire (Bulgaria). 8th Inter-
national Conference on Large-Scale Scien-
tific Computations, Sozopol, Bulgaria, June 6-
10, 2011, lecture notes in Computer Science,
Springer, to appear.

Mandel, J., J. D. Beezley, and A. K. Kochan-
ski, 2011: Coupled atmosphere-wildland fire
modeling with WRF-Fire version 3.3. Geo-
scientific Model Development Discussions, 4,
497–545, doi:10.5194/gmdd-4-497-2011.

Ritter, N. and M. Ruth, 2000: Geo-
TIFF format specification revision 1.0.
http://www.remotesensing.org/
geotiff/spec/geotiffhome.html.

Wang, W., C. Bruyère, M. Duda, J. Dudhia,
D. Gill, H.-C. Lin, J. Michalakes, S. Rizvi,
X. Zhang, J. D. Beezley, J. L. Coen, and
J. Mandel, 2010: ARW version 3 modeling
system user’s guide. Mesoscale & Mis-
croscale Meteorology Division, National Cen-
ter for Atmospheric Research, http://www.
mmm.ucar.edu/wrf/users/docs/user_
guide_V3/ARWUsersGuideV3.pdf.

4



Default geogrid 900 m topography USGS NED 10 m topography

projection = regular ll
dx = 0.00833333
dy = 0.00833333
known x = 1.0
known y = 1.0
known lat = -89.99583
known lon = -179.99583
wordsize = 2
tile x = 1200
tile y = 1200
tile bdr=3
units="meters"
description="Topography"

geotiff = ned 10.tif
description="Topography"
units = "meters"

(a) (b)

Figure 3: Comparing the topographical features in a 10 m resolution domain using the default
geogrid dataset (a) and high resolution data from the USGS (b). The metadata needed in the
index file is given below the images. For GeoTIFF datasets, the projection and geolocation
information is determined automatically from the GeoTIFF metadata.

5


