

The Energy-Water Nexus: **Challenges, Tradeoffs & Opportunities**

April 3, 2014 **AMS Washington Symposium**

Kristen Averyt

University of Colorado Boulder

Associate Director for Science

Cooperative Institute for Research in Environmental Sciences **Director**

Western Water Assessment

The Energy-Water Nexus

Water for Energy Collisions: 2006–2012

Water use at a given power plant is a function of fuel type and cooling technology

Coal-fired power plant

Supplement coal plant with carbon capture and storage

Decrease C emissions by ~90% per kWh **Increase** water use by 90 to 100%

Nuclear Power

Solar Power (parabolic trough)

Decrease C emissions by >95% per kWh Little change in water use

Wind

Solar power (PV)

Decrease C emissions by >95% per kWh **Decrease** water use by >95% per kWh

Replace coal plant with natural gas:

Decrease C emissions by ~50% per kWh Decrease water use by ~30% per kWh

What are the implications for water resources of different electricity portfolios out to 2050?

Business as Usual: Water

Withdrawal 50

Consumption

Business as Usual: Carbon Emissions

Business as usual:

emissions stable, concentrations increase

Rogers et al., 2013; Clemmer et al., 2013

Business as Usual vs. Carbon Budget

carbon budget: 170 GT CO_{2 (eq)} by 2050

Energy for Water: Water Stress (1999–2007)

Energy for Water

>20% of SW electricity supply is used by the water sector

Energy for Water

Risk & Resilience

Are power plants resilient to future extreme weather?

Will there be enough power to get clean water where it needs to be when it needs to be there?

THANK YOU

Kristen Averyt

University of Colorado Boulder Kristen.averyt@colorado.edu

Associate Director for Science

Cooperative Institute for Research in Environmental Sciences **Director**

Western Water Assessment