

Congressional Research Service Informing the legislative debate since 1914

Energy-Water Nexus: The Water Sector's Energy Use

Claudia Copeland

April 3, 2014

Interrelationships between Water and Energy

Electricity Consumption for Water Supply and Wastewater Treatment (2000)

Public water supply	30.6 billion kWh
Publicly owned wastewater treatment	21.0 billion kWh
Subtotal: public water and wastewater	51.6 billion kWh
Domestic and commercial self-supply	1.3 billion kWh
Industrial and mining self-supply	3.8 billion kWh
Agriculture self-supply (irrigation & livestock)	24.6 billion kWh
Power generation self-supply	14.2 billion kWh
Privately operated wastewater treatment (e.g., industry and manufacturing)	42.0 billion kWh
Subtotal: private supply and treatment	85.9 billion kWh
TOTAL PUBLIC & PRIVATE:	137.5 BILLION kWh

Source: Electric Power Research Institute, Water & Sustainability (Vol. 4): U.S. Electricity Consumption for Water Supply & Treatment – The Next Half Century, 2002

National data can obscure regional or state-specific differences in water-related energy use

Water-related energy use in California consumes 19% of the state's electricity vs. 4% nationally

Lifecycle energy-intensity of water ranges from 2,700 kWh/million gallons in New York City to 5,000 kWh/million gallons in Austin

In California, energy intensity of the water cycle ranges from 4,000 kWh/million gallons in the northern part of the state to 12,700 kWh/million gallons in the south

Energy for public water supply and wastewater facilities

- Nearly all energy consumed by the nation's 200,000 public drinking water treatment systems is electricity; about 80% is used for pumping
- Nearly all energy consumed by the nation's 15,000 publicly owned wastewater treatment systems is electricity
 - Aeration, pumping and solids processing account for most electricity used
- Greater amounts of energy are needed for more advanced treatment processes and for infrastructure systems as they age and become less efficient

- Opportunities for efficiency exist
 - Optimizing system processes; upgrading to more efficient equipment and right-sizing equipment; improved energy management; generating energy on-site (wastewater)
- But there are barriers to improved energy efficiency by water and wastewater utilities
 - Cost; municipally-owned water utilities are risk-averse; lack of understanding by managers about energy costs and how to reduce or control them

Research and information needs

- Data gaps!
- Integrated research on water and energy operations
- Research on advanced technologies that save energy and save water
- Better understanding of linkages between energy, water, land, agriculture, and risks of climate change and extreme weather
- Education and outreach to water users, the general public, and public officials on energywater nexus

Questions?

Claudia Copeland Specialist in Resources and Environmental Policy Congressional Research Service ccopeland@crs.loc.gov