Weather Variability on Store Performance: Improving Resilience for Retail Businesses

MILLERSVILLE UNIVERSITY

The Opportunity

Largest private sector employer contributing \$2.5 trillion to annual U.S. GDP (1/5 of the economy)

 Sales fluctuate due to disruptors like financial crises, wars, natural disasters, and weather

•The Effects of Weather on Retail Sales by Martha Starr-McCluer (2000) found weather immediately effects consumer spending and can explain changes in spending during future periods

My analysis was able to predict within \$300 of actual store volume

Personal Store Performance

	EST RSA 78		YALLS	600		16.37	Plan bitter 123.64	2.301	E2:05.47		LY Units	Pian 12%					8.110 328	783	\$128.55 \$84.77	
West			10.304.00								1011									
Deg	HORDS D		0.641.30																	
	Lates			Tiana		CNV	ADS	UPT	Marchandias Category		Credit	Laad	E Opp Vet	Biratult	Stratute Plan Traffic		TPLA	SPAN		
- Beg	Plan 8	Acts	(Plan	Act	5	Ast	Act	Plan 8	Ans	Plan Units	Act Shifts	*		10000	Sales 5	Trans	100	-	1
and lot of	A VALUE	Action	10.00	199	1.0	14.00	\$128	-	- 8100 12-2	and at	100 A 100	20000	100		-	1.1		998 M.	No. of Concession, Name	
1.1	RIMAN						Bellin.			-	0				M.W.					
	Antipation								Callin 1						10000					
warw.	SAMA?	8772.86	distanti)	-12	48	22.62	- 204.02	2.838	\$510.62	3417.88	. 18	1	8.0N	-	1123.30	8				8176
		80.70.00	18430.001	-	-	10.00	875.34	11.322	Bana.31	\$530.40	24	24	8.0%	-	\$753.82	8		#1	21.28	1.100
-	\$1,099,52	and and																		

Application: Meeting User Needs

Investigate weather impacts on customer behavior and worker productivity

*Utilize collected business metric data (conversion, ADS, traffic) and climate data from store location (Lancaster, PA)

 Perform a set of multiple linear regression analyses to serve as a predictive process in forecasting daily volume

 Provide a risk assessment for store management to incorporate into their daily focus

Analysis

Regression Model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$

*Customer-Controlled • Traffic

•Seller-Controlled • Conversion • ADS WEATHER PARAMETERS (PREDICTOR VARIABL *CDD *HDD *Average Dew Point Temperature *Average Humidity *Average Wind Speed *Average Visibility *Total Liquid Precipitation Amount *Total Snowfall Amount

Implementation: April 10, 2015

•Forecaster	d Weather	Variables:					
CDD	HDD	Dew Pt.	Humidity	Visibility	Wind	Precip.	Snowfall
0	8	52	83	5	11	0.56	0.00
•Predicted							
Conve	rsion	ADS		Traffic			
16.9	9%	71.94	1	478			
•Calculated	l Volume =	\$5,811.46	i				

Outcome

Company Planned Volume: \$8,839.00 •Predicted Volume: \$5,811.46 (-34% to Plan) Business Strategy
Increase conversion to 18%
Maximize sales & Maintain ADS

• Reduce spending by cutting payroll hours by 30% (12 hours)

- •Actual Volume: \$6,094.29 (-31% to Plan)
- Reduced losses by 10%
- Effectively managed payroll
 Flexibility

Amanda Mitchell

M.S. Integrated Science Applications Geoinformatics

Capstone Experience: Science Technology Corporation

CHIMERA - Community Hyper-spectral Infrared Microwave Earth Retrieval

How can we meet users needs?

Many problems in science and engineering require fitting data to a model or fitting equation. The fit can be performed with certain assumptions about the model.

A linear fit assumes that the fitting equation, y = f(x), can be expressed as a linear operator – that is

Where G is a matrix that describes the fitting equation for the set of independent data points, x(i), that corresponds to y(i). In other words, G is our forward model.

A is a vector that contains the coefficients that we want to solve for.

Eigenvalue Decomposition and **Principal Components**

- entire data set
- We can extract the significant numbers eigen-functions from our data using principal components
- We then can find a regression operator to statistically predict the coefficients of a
- Amazingly, we do not need to know any of the physics that relate the measurements to the parameters of interest.

Conclusion

- Cuts down processing power
- Saves time
- ▶ Saves money
- Ignoring noise, making data extremely accurate

THANK YOU!