Using Meteorology to Optimize Deployment of Renewable Energy

John Moore American Meteorological Society – Washington Forum March 13, 2016

Sustainable FERC Project

Policies for a Clean Electric Grid

Summary

2

6

- Meteorological drivers of load and generation must be considered in planning, siting, and operating renewable energy generation and transmission.
 - Optimizes the resource adequacy balance -reduces variable energy integration issues.
 - Fewer fossil reserves.
 - Produces more just and reasonable rates.

Key Legal Standard

- The Federal Power Act electricity rates, and practices affecting rates, must be just and reasonable.
- Failure to consider and implement costeffective and efficient grid planning solutions could result in unjust and unreasonable rates.

Sustainable FERC Project Policies for a Clean Electric Gi

Weather Matters to the Grid

California ISO Control Center Folsom, California

Sustainable FERC Project

Sustainable FERC Project

Especially for Integrating Renewable Energy

Geospatial maps show real-time weather conditions and forecasts, generator status, wind, solar, hydro performance and forecasts, wildfires, etc.

Sustainable FERC Project Policies for a Clean Electric Grid

Planning for a Low Carbon Future

- Weather and climate affect both load and generation.
- Reliability Need: Generation should follow load closely at all timescales in an interconnected region.
- Affordability Need: Meet reliability and public policy needs at the lowest possible cost - just and reasonable rates.

Sustainable FERC Project

3

Approaches

- Focus solely on high capacity resource areas and large new transmission buildout. But risks include:
 - Mismatch of load with generation
 - Unnecessary curtailment
 - Higher costs for infrastructure buildout
 - Dependence on fossil thermal generation reserves
 - Slower path to goals.
- Current examples of this approach.

Sustainable FERC Project

Approaches

- Optimize the resource value in relation to load, based on meteorological considerations.
 - Promotes resource diversity
 - Targets transmission to optimal resource mix
 - Minimizes need for fossil generation reserves

Sustainable FERC Project

Sustainable FERC Project

What does this mean?

Imagine . . . a 100% hydropower standard. Assume:

- Tax incentives to maximize energy production
- Low-cost power drives long-term power production agreements
- Current grid planning practices.

9

7

Sustainable FERC Project

River System A

8

- High annual stream flow + new transmission
- But . . . in some years the spring runoff correlates with lower peak loads, and sometimes the drought years correlate with peaks.
- Result: Periodic massive oversupply and undersupply
- Costly solutions: More hydro in a different area, and/or more fossil for reserves.

River System B

- Better correlation than System A, but every 5 years or so it experiences drought conditions – fossil reserves to the rescue.
- Two years after construction there is an early and rapid melt of snowpack leading to oversupply. Massive curtailment and prices plunge.

11

Sustainable FERC Project

River System C

- Only average flow conditions, but it peaks in the summer and winter.
- No transmission because it wasn't identified as a high capacity resource.
- Early consideration of this resource could have avoided the unnecessary costs and integration problems with A and B.

Sustainable FERC Project Policies for a Clean Electric G

Bottom Line

- All capacity is NOT created equal.
- Some high capacity sites may have periods of extremely low or extremely high capacity factors at different time scales; forecasting may be challenging.
- Loads and generation may not be correlated.
- Goal best match of load and generation and reduce overall variability across time scales.

Sustainable FERC Project

Wind and Solar Resources Not Evenly Distributed Across the Country

14

Sustainable FERC Project

Photovoltaic Solar Resource

15

13

Solutions

- Expand FERC Order 1000 to interregional and cross-regional planning
 - One set of rules for planning and cost allocation to streamline and accelerate the planning process
 - Identifies optimal, cost-effective transmission solutions
 - Improves alignment of resources with load patterns across regions.

Sustainable FERC Project

Solutions

- Develop new system models to incorporate meteorology into generation and transmission planning (and markets).
 - Look beyond the highest capacity areas
 - In combination with broader planning, will help to match load shapes and generation across time zones and regions.
- No grid region does this now.

Sustainable FERC Project

Solutions

18

16

- Create transmission cost allocation metric to reveal value of resource optimization.
 - Currently very few benefit metrics for assessing benefits of transmission projects.
 - For example, "avoided production cost" usually is the sole metric for economic projects.
 - A weather-specific metric would monetize the value of different transmission solutions based on load/resource correlations and related factors.

Sustainable FERC Project

Systems-Based Thinking

"Like a prairie, savannah or rain forest, the new and renewable energy industry must also evolve to form a complete, stable and complex ecosystem... the global shift to clean energy is all about systems.

Michael Liebreich, Founder, Bloomberg New Energy Finance

19

Sustainable FERC Project