10th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS)

P2.3

A physical method for evaluation of boundary layer height from lidar observations

Segayle Walford, Howard University, Washington, DC; and B. Demoz and E. Joseph

Boundary layer depth and structure are important to the development of convection. Multiple methods have been used to quantify the depth of the boundary layer from lidar data. We discuss a new method that quantifies the growth, variability and evolution in the boundary layer height as well as elucidate the role of convection, convergence, and nighttime processes on the BL height. This method, which makes use of the aerosol scattering ratio (ASR), the ratio of the total scattering to the molecular scattering, is described and compared with other techniques used to obtain boundary layer heights from Goddard's Holographic Airborne Rotating Lidar Instrumentation Experiment (HARLIE), Scanning Raman Lidar (SRL), and radiosonde measurements taken during the International H2 O Project (IHOP) in the Southern Great Plains (SGP), Oklahoma. The HARLIE is also used to obtain information on the spatial variability of the boundary layer height. These data sets are combined with water vapor mixing ratio to quantify the convective variability within the boundary layer. Results from a selected number of IHOP IOPs that were focused on BL evolution and heterogeneity will be discussed.

Poster Session 2, IOAS - AOLS Poster Session 2
Wednesday, 1 February 2006, 2:30 PM-4:00 PM, Exhibit Hall A2

Previous paper  Next paper

Browse or search entire meeting

AMS Home Page