P2.5
Vertical structure and spatial-temporal evolution of the Madden-Julian Oscillation based on the Atmospheric Infrared Sounder data
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
The AIRS data suggest some new boundary-layer structure not embodied by the NCEP-NCAR reanalysis especially in the Indian Ocean and Western Pacific where there is very little conventional data to constrain the analyses. such as near-surface warming and moistening under suppressed MJO convection, near-surface cooling and drying under enhanced MJO convection, a much well defined and shallower boundary-layer structure, and a sharp transition from boundary-layer shallow convection to deep convection. The MJO vertical moist thermodynamic structure based on the AIRS data is consistent with the MJO frictional convergence feedback theory proposed by Wang (1988, 2005), which suggests that the interaction of deep convection, large-scale equatorial waves, and boundary-layer dynamics are fundamental physical components of the MJO. This result indicates that the accurate representation of the moist thermodynamic processes in the boundary layer and the interaction between shallow and deep convection may be the key for climate models to accurately simulate and predict the MJO.
