JP1.8
Revealing the SeaWinds ocean vector winds under the rain using AMSR. Part I: The physical approach
This presentation will have two objectives: i)the first objective is to describe the basic features of the AMSR retrieval algorithms for sea surface temperature, wind speed, columnar vapor and columnar liquid. The performance of the algorithms will be evaluated through comparisons to retrievals based on other instruments. ii)the second objective is to discuss the physical approach to estimating AMSR-based atmospheric corrections of the scatterometer measurements. The scatterometer signal that propagates through rain is impacted in three ways: the signal is attenuated by the rain, clouds and vapor in the atmosphere; the signal is augmented by the backscatter from rain droplets; finally, the signal is augmented by the rain-induced roughening of the ocean surface ("splash"). Estimation of the near-surface wind velocity from scatterometer measurements is based on the assumption that variations in the measured power are solely due to variations in the normalized radar cross-section (sigma0) of the ocean surface that result from variations in the wind. It is, thus, very important to properly account for the three rain effects and to correct the sigma0 measurements before they are used to estimate wind vectors. The physical approach to evaluating the atmospheric attenuation, rain backscatter and rain-induced surface roughening (the splash) using the AMSR geophysical retrievals will be discussed. The results will be related to the retrieved precipitation, cloud and vapor. Comparisons to estimates from other instruments will be presented.
A related presentation [2] will evaluate the quality of the rain-corrected scatterometer winds. It will compare and contrast the performance of the physical approach, described here, to the performance of the empirical approach to rain correction of the scatterometer winds , described in Part II [2].
[1] Huddleston, J. N., and B. W. Stiles, "A Multi-dimensional Histogram Rain Flagging Technique for SeaWinds on QuikSCAT." Proc. of IGARSS Conference, Vol. 3, pp 1232-1234, Honolulu, 2000.
[2] Stiles, B. W. et al, "Revealing the SeaWinds ocean vector winds under the rain using AMSR . Part II: The empirical approach", 14th Conf. on satellite meteorology and oceanography., Atlanta, GA, 2006