4.2
A Lightning Data Assimilation Technique for Mesoscale Forecast Models
Presentation PDF (1.4 MB)
Results will be presented for a warm-season test case 20-21 July 2000, when storms initiated and developed in large systems in Kansas both days. The second round of convection began by 22:00 UTC (20 July), and storm system with strong outflow had developed by 00 UTC on 21 July. Lightning data were assimilated over a 24 hour period (starting at 00 UTC on 20 July), covering the first round of convection and the start of the second. A control run was spun up over the same period only with the usual 12-hourly update cycle. As expected, during the assimilation period the model produces substantially more accurate precipitation (rates and location) than the control forecast. Even when water vapor was added to enhance convection, the rainfall rates were generally less than those indicated by rain gauge data. A forecast was started from the resulting initial condition at 00 UTC on 21 July 2000.
The lightning assimilation was successful in generating the cold pool that was present in the surface observations at initialization of the forecast. The resulting forecast showed considerably more skill than the control forecast, especially in the first few hours as convection was triggered by the propagation of the cold pool boundary.
Supplementary URL: http://www.cimms.ou.edu/%7Emansell/mesoscale