Presentation PDF (1.2 MB)
The influence of turbulent mixing on the transport of 222Rn and its daughters is studied by analyzing the radioactive decay contribution to the governing equations. Large eddy simulation is used to simulate the reacting transport of 222Rn and its progeny in steady state convective boundary layers (CBL) and in unsteady conditions represented by the growth of a CBL under a pre-existing reservoir layer. Performing an exact decomposition of the flux budget equations allowed us to determine which physical processes are responsible for their vertical transport.
In the steady-state CBL, 222Rn flux decreases linearly with height. Its flux budget is similar to the one of inert emitted scalars, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tend to destroy the fluxes. However, 222Rn short-lived daughters, i.e. 218Po, 214Pb and 214Bi, have their radioactive decaying contributions acting as flux sources leading to deviations from the linear flux shape. The budget analysis reveals that the gradient contribution to the flux is the most affected term. In the unsteady boundary layer, 222Rn and its progeny concentrations collapse due to the rapid growth of the CBL. The analysis emphasizes the crucial role of turbulent transport in the behavior of 222Rn morning concentrations. In addition, the analysis of vertical distribution of the chemical contributions to the concentrations, i.e. the reacting zone, reveals a discrepancy in height of 222Rn daughters' radioactive transformations.