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Ensemble modeling is being used widely

|
Benefits

p)
Issues .

NOAA’s - North American Multi-Model Ensemble3
Federal Reserve Bank Survey of Professional Forecaster
Analysts consensus forecasts available on most investor websites

Frequently the average of multiple forecasts is more accurate than
even the best individual forecast

The variation in the forecasts indicates the overall degree of
uncertainty

In-sample optimization versus out of sample performance

When is a simple average better than more complex approaches?
Common assumptions and approaches create dependencies
between forecasts.

This work will focus on understanding and mitigating the dependencies -

across models, and across location simultaneously

1)
2)
3)

Jason RW Merrick, 2008; Kenneth F. Wallis, 2011; Robert T. Clemen., 1989.
Hsiao 2014, Winkler 1992, Weigel 2010

Kirtman 2014, Palmer 2004



Today, decision makers have multiple forecasts of multiple data

points
Temperature Forecasts from North American Multi-Model Ensemble
Multi-model ensembles IRI/LDEO collection of climate data
e Models used
- CANSIPS

CMC1-CanCM3 — Forecast & Hindcast
CMC2-CanCM4

COLA-RSMAS-CCSM3
COLA-RSMAS-CCSM4
GFDL-CM2p1l-aer04
GFDL-CM2p5-FLOR-A06
GFDL-CM2p5-FLOR-BO1

Lattitude
Lattitude

Lattitude
Lattitude

Lattitude
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There can be correlations between forecasters as well as locations




Various forms of forecast averaging are typically used

Simple Average W — 1/ n

(Genre 2013) | m
2 an 2
Weighted Average W = O ._ / O L
(Hsiao 2013) | | J
J —

Averaging
(Smith 2009)

Bayesian Model P(Y | fl""’ fnm) :Zm[:(Y | fJ)PO(fJ)
j=1

These approaches do not consider inter-model or intra-model correlations



Approaches have been developed for error correlations in

Intra-model
spatial error

correlations
(Cressie 1991)

Inter-model
error

correlations
(Winkler 1981)
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Correlations between models or locations impact the aggregation

Spatial correlation impact

Model correlation impact

Aqaregate forecast variance
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Impact of correlation on the aggregation of a N(2,4) and a
N(3,9) component forecasts using Winkler’s(1981) model.

Variance increase

Average variance increase due to spatial correlation
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Impact of spatial auto-correlation on overall forecast
variance. Assumes a 10x10 grid and a 1t order Markov
Random Field and an SAR model.

Both inter model correlations and intra model spatial correlations are linked by the

forecast errors




An integrated approach for model and spatial dependencies is

proposed
Likelihood model
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is the inter model error correlation
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Model 1 estimated weight
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The interaction of spatial and model correlations can be

important — but not always

Optimal weight of Model 1 in ensemble

Simple average

Model 1-2 correlation
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Simulation of model
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Spatial correlation within Model 1

*3 model ensemble

e Unit variances
prior to spatial
correlation

* Correlation
between models 1
&2

e Spatial correlation
model 1 only
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Bayesian techniques can be used to estimate the model

MCMC trace of Log Posterior probability
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The proposed model fitted to temperature forecast data shows
marginal improvements

Proposed ensemble aggregation Simple ensemble
technique average

RMSE 1.51 RMSE 1.56

Max Abs Error 4.19 Max Abs Error 4.40

Points in mid distribution | 50% Points in mid distribution | 47%
Model's Probability Integral Transform e Simple Avg. Probability Integral Transform
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Forecasts from Jan 2016, 11 month ahead, NMME forecast of monthly temp; Observations are from the NMME
.CMC1-CanCM3 .HINDCAST model.



Each approach has a similar spatial error distribution

Proposed model errors
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The proposed model is better in 26 out of 34 ( 76%) of the locations




Further work is required

» Explore / mitigate impact of heteroskedasticity on estimations
* Estimate variance for each point versus for each model

Model * Explore other parameterizations to improve aggregation
Improvements performance
e Explore use of Bayesian point estimates to simplify assessments
e Use climate history to create informed priors

e Use simulated data to understand circumstances where the
extra effort would be valuable
Explore Brier score and other forecast scoring rules

Model
Assessment .

o * Model behavior may suggest a simpler heuristic approach
Heuristic * Develop less calculation intensive methods to aggregate
approach ensembles in the presence of spatial autocorrelations and
model correlations




Thank you

Questions or Discussion?
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Appendix



With multiple forecasts and data points the model can be
estimated apriori

Cross Model error correlation Within Model Spatial error
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Simultaneous estimation is required due to interactions between parameters




Spatially Estimated Error

Comparison of spatial correlation estimation vrs. observed
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Apriori, the ensemble mean can be used to estimate the degree of spatial correlation
in each model. The integrated model should improve upon this estimate



