

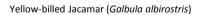
Annual and Interannual Variability of Forest Fires in Tropical South America and their association with the Normalized Difference Vegetation Index (NDVI) during 2000-2010

Andrés Felipe Zapata Muñoz Biological Engineer, M.Sc, Ph.D(c)

National University of Colombia Department of Geosciences and Environment

20th International Congress of Biometeorology Cleveland, OH 2014

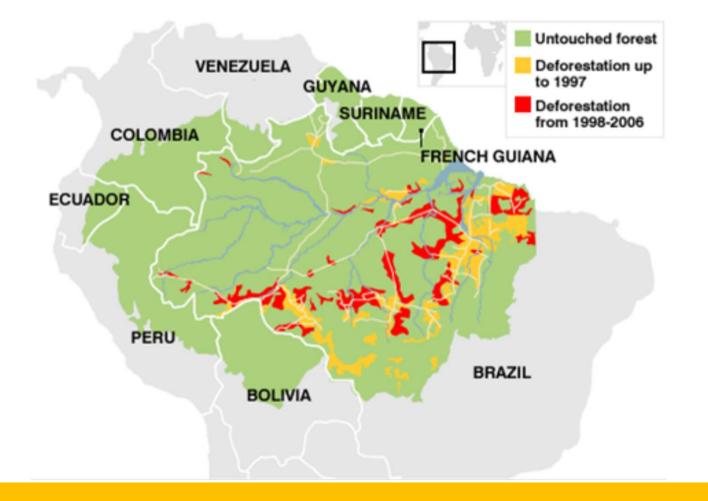
Motivation



Map of the Amazon rainforest as WWF

Scarlet and white tanager (Crisothlypis salmon)

Tropical forest in the Amazon, near Manaos (Brasil).



Yagua elderly from near Iquitos using his blowguns (Pukana).

Deforestation in the Amazon Basin

Normalized Difference Vegetation Index (NDVI)

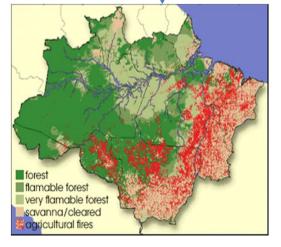
• The Normalized Difference Vegetation Index (NDVI) is calculated by the following expression:

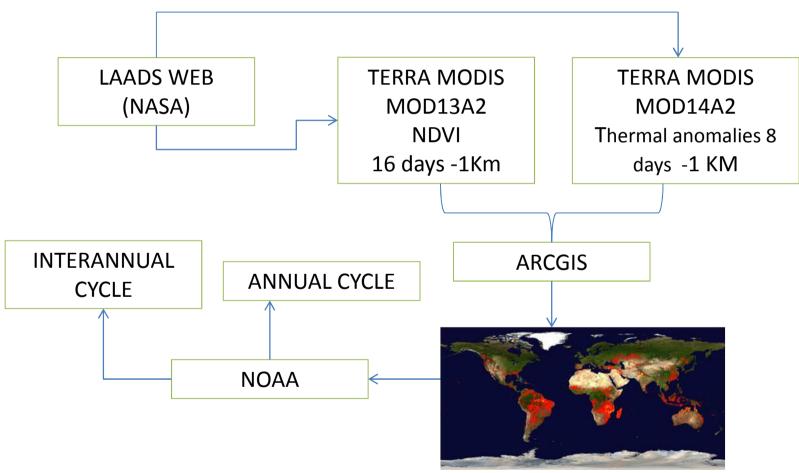
$$NDVI = \frac{(IRC - R)}{(IRC + R)}$$

- Where IRC is the reflectivity in the near infrared and R is the reflectivity in the red .
- The range of values of the spectral reflection is between 0 and 1. Both the reflectivity of the near infrared and the red, are ratios of the reflected radiation on the incoming radiation in each spectral band. Consequently these ranges of values, the NDVI value varies between -1 and 1.

Research Problem

(Compton Tucker, NASA GSFC)




Imagen satelital de la deforestación en el estado de Mato Grosso (Brasil).

Nepstad et al., 2001

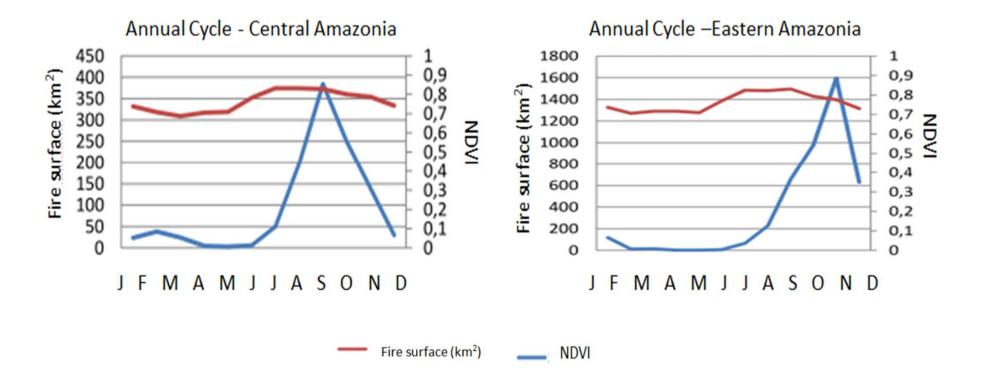
Methodology

Names, Areas and Location of the Quadrants of the Study Zones

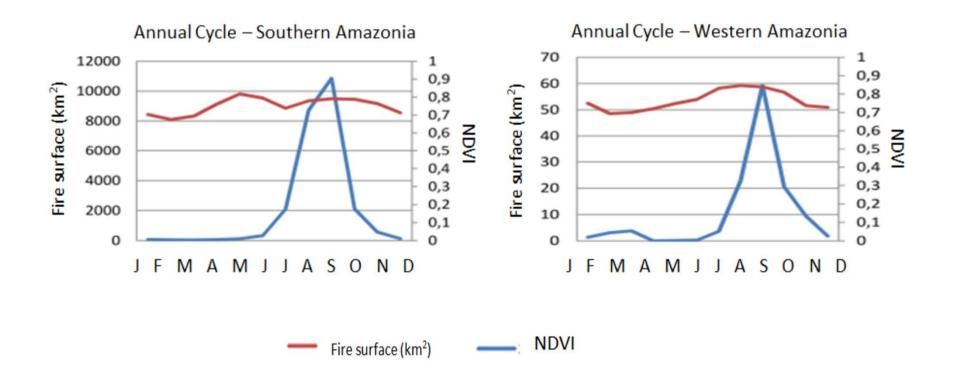
Zone	Area (km²)	Lower left corner		Top right corner	
		Latitude	Length	Latitude	Length
Central Amazonia (CA)	862283	-67	-7	-57	0
Eastern Amazonia (EA)	385491	-57	-10	-48	2
Southern Amazonia (SA)	663703	-67	-15	-57	-7
Western Amazonia (WA)	386574	-76	-7	-67	0
Llanos Colombo - Venezolanos	875609	0	74	9	63

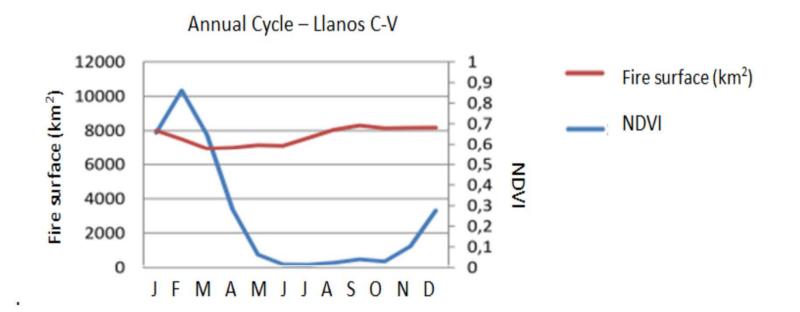
Map of the Quadrants in Study Area

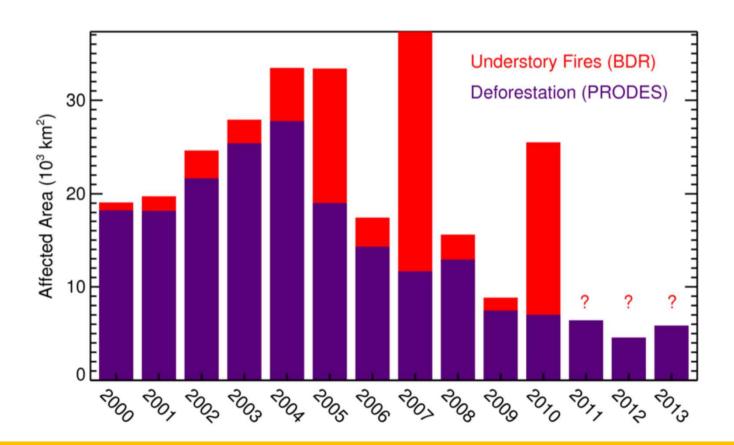
Zone	Nº
Central Amazonia (CA)	1
Eastern Amazonia (EA)	2
Southern Amazonia (SA)	3
Western Amazonia (WA)	4
Llanos Colombo - Venezolanos	5



RESULTS


Annual average cycle of fire and NDVI mean, for Tropical South America during the period 2000-2010.


Annual average cycle of fire and NDVI mean, for Tropical South America during the period 2000-2010.


Annual average cycle of fire and NDVI mean, for Tropical South America during the period 2000-2010.

Annual rates of deforested area and burn-damaged area in Amazonia, as indicated by the PRODES and BDR algorithms.

BURNED AREAS AVERAGE

	Burned Areas Average		Maximun		Minimun	
Zone	Min (km²)	Max (km²)	Relative Period	Max Abs.	Relative Period	Min Abs.
Central Amazonia (CA)	4	384	Aug - Oct	Sept	Apr - Jun	May
Eastern Amazonia (EA)	1,5	1597	Sept - Nov	Sept	Apr - Jun	May
Southern Amazonia (SA)	42	10885	Aug - Oct	Sept	Feb - Apr	March
Western Amazonia (WA)	0,11	59	Aug - Oct	Sept	Feb - Apr	March
Llanos Colombo -Venezolanos	161	1033	Jan - Mar	Feb	Jun – Aug	Jul

NDVI AVERAGE

Zone		OVI rage	Maximun Range Period	
	Min	Max		
Central Amazonia (CA)	0,68	0,83	Jul – Aug	
Eastern Amazonia (EA)	0,7	0,83	Aug - Sep	
Southern Amazonia (SA)	0,67	0,81	May - Jun	
Western Amazonia (WA)	0,69	0,84	Aug - Sep	
Llanos Colombo - Venezolanos	0,59	0,68	Sep – Nov	

Conclusions

- Of four studied regions of the Amazon basin, Eastern Amazonia was most affected by thermal anomalies and forest fires, which spread quickly through the zone.
- During November 2002, was reported the burned area was 2255 km².

Conclusions

Although **Southern Amazon** have developed coverages of tropical rainforest, in aerial photographs observe a strong impact in this area, by opening agricultural boundaries and wild trees felling.

Conclusions

 In the Amazon regions studied, forest fires occur with more frequently in the second half of the year with a defined unimodal annual cycle.

• The forest fires largely extending from the east toward the center, reaching its maximum levels in the months, September and November.

Thank you!

